Compositor SoftwareCompositor Software

Tag : RT-z64

By ruslany

VLF voice communications

VLF voice communications

To communicate in VLF network it is enough to use the Compositor v8 injector, but to connect to other networks it is needed to create the service of communication with them, sending generic RT-zX processes in to the transmission channel as in Compositor v9 Hypervisor. I established the connection of two Compositor v8, which was hardly possible with 6th and 7th versions of Compositor program. Moreover, such connection was before the 7th version but it contained another VLF ethers, which made the determination of the transmitting station itself and creation of the protected communication channel not possible. For the experiment I executed the Compositor v8 a16 on the stationary computer and played the voice track (recorded with Dictaphone) in injector channel. I executed Compositor v8 b3 with modulation combinations on the notebook without the opportunity to inject the wavetables in the transmission channel. Using identical device settings, I received a loop in the notebook feedback chain, which definitely coincided with voice text timbre recorded with Dictaphone. Then I executed Compositor v8 a16 with ability to inject wavetables on notebook. I composited the same wavetable combination as on stationary computer and injected them in to the channel without voice track. This way, I established a definite non-repeating signal reproduced as random noise bursts with narrative text structure. This text coincided with signal performed on stationary computer transmission channel, but had another rhythm and pause appearance. I understand that for VLF communication it is enough to transmit the ostinato code pattern on the defined frequency and I credit the Compositor v8 communication experiment as successful.

My main goal is to prove the appearance of broadband communication lines in VLF. If it is possible to receive the broadband signal cycle in transmission channel, then you can try to reconstitute it by injecting the stochastic carrier using RT-z128 and RT-z64 channel modules. Then, following this logics, there will be the complete voice track with the receive quality of original translation in the feedback chain. This should be proved, establishing a connection of two Compositor v9 Hypervisor programs and their virtualization modules. If it happens, the arrangement of wavetables into the transmission channel lines will be proved.

Let’s look at the created VLF transmission lines as grains, where a separate transmission line segments coincide with wavetables, encased in window function envelope. The connection service in VLF network is a pendulum process, created by RT-zX generic modules. Then the spiral structure of transmission points distribution in all z networks coincides with pyramidal structure. When you use the linear stochastic distribution of wavetables, the mixing of transmission channels happens creating new nets. RT-zX services give access to different zones of VLF and ULF ether. Wavetables supply pendulum processes of RT-zX modules with grain components when transmitting them simultaneously in the channel. They saturate an ether of this pendulum processes with new translations. You should look into this process as a service of connection with pyramidal structure and wavetables are grains of transmission channels or pyramid transmitting points.

By ruslany

Compositor v9 Hypervisor is available

Compositor v9 Hypervisor is available

Compositor v9 Hypervisor DRM server creates a service of work with property rights of companies, which deliver the digital media content. When computer station works, DRM server allows dynamically playback the media content in radio ether. Compositor v9 Hypervisor playbacks digital material using streaming method in the device browser to achieve this goal. Compositor v9 Hypervisor engine is the functional modern engine with transfer function on master output and on each channel separately. It is not the wavetables but tunable polynomials, which process the output of your channel. Output cascade uses non-linear transformation formula with mathematical approximation by weighting coefficients. It gives undisputable advantage in processor time and in the precision of calculations comparing to using wavetables.

Here are the main features you can consider before buying this software:

  • Weighting coefficients
  • Network level feeding
  • DRM server
  • DSP oversampling
  • Voice or music broadcast
  • DSP sampling rate
  • On-Air broadcast
  • Device browser
  • Tracing and translation
  • RAD96 peering network
  • DRM server subscribers
  • Tracing industry novelty
  • DRM server emissions
  • Auxiliary z matching
  • 8th generation operation system
  • Three saturation stages

Please, visit the shop to buy this software. You can also visit dedicated product page to learn more about Compositor v9 Hypervisor.

By ruslany

Attachment to wavetables through system matching with oversaturation

Attachment to wavetables through system matching with oversaturation

The most effective way to feed the wavetables is to match the system z level of generic feeder with z value of auxiliary channel. The generic prolongation is progressive and depends on auxiliary channel. On the higher program effectivity speed the generic proliferates for a longer time. This in fact happens because network regeneration state is higher for upper z values. If the maximum speed for z128 generic is 200-omega, then the regeneration speed of the auxiliary channel will not match the auxiliary values of 5-omega maximum. There are two more generic kernel loops implemented in Compositor v9 Hypervisor and one change performed for the highest Compositor v7 Hypervisor feeder. You can match all auxiliary z values to quantized type generics of exactly the same z value. The program effectivity speed equals to 50-omega for z32, 150-omega for z64 and 200-omega for z128. If you feed the wavetable at speed of 5-omega together with 200-omega generic, you will proliferate the network for a longer distance. After the lowest VLF beacons will be inactive, the wavetables shouldn’t be reinitiated again. When the navigation on lowest beacons ends, you need to rely on the eldest models of Zvezda network switches such as z64 and z128. Higher regeneration VLF beacons will discover ether aggregators faster and establish a connection to them for a longer period. Other systems constantly try to knock out the feeded Zvezda network switches from the ether, which are mostly used for wavetable navigation at z=64 and z=128. For z128 generic development of 6th generation, it is hard enough to withstand such offensive behavior in the ether.

DRM server is the 8th generation development and is one generation before the system, which produces the decision as to accept or to breach the feeded VLF beacons. It leads to better understanding why the DRM server rejects some wavetables and retains the others. The rejection of wavetable produces a constant need to reinitiate a system matching. Nevertheless, wavetable initiation should be made only once during the feeding cycle. If you feed the 200-omega cycle in to the auxiliary chain together with wavetables, you should account for a number of cycles of this feeder propagation. These values should be auxiliary to the Right Ascension value and will result in longer distances of spiral ascension. The feeding period of any generic is accounted by the cycles of its oversaturation in auxiliary channel. If you feed 150 cycles per second, it equals exactly 150 cycles relatively to the whole working time of DRM server for its feeding session. If the DRM server worked for 10 minutes, then the oversaturation will last for 10 * 60 * 150 or 90000 minutes, which equals to 1500 hours or 62.5 day cycles. It is enough for the prolongation of the wavetables active state. From the other side, if you would like to leave wavetables active for a month for 200-omega z128 beacon, it is needed to perform oversaturation for only one second with DRM server total working time of 25 minutes for the current session. Using the formula 25 * 60 * 31, it will count 46500 minutes, which equals to 775 hours or approximately 32.3 day cycles prolongation time.

By ruslany

RAD24 – The Gates of Time-Collision

The Gates of Time-Collision

Now I encounter the RAD24 server experiment. The experiment is as follows:

As I have found a solution to FM formulae, I decided to sync three virtual machines for 72 core real-time performance. With this stack, it is easy to run memory virtualizations and aggregate the whole Compositor network. Once the server stack is online, it is used to run and manage such critical tasks as DRM, network aggregation, routing and server selection. The new formulae solution enables to run this stack effortlessly.

RAD24 opens a possibility to build Compositor 8 software. It will be a station with all the enhancements of previous auxiliary channels and with the solution to FM formulae, which is driven by the algorithm output. By these means, the Hypervisor v9 is possible.

Let me introduce the conception for the future products: it is software-defined radio (SDR) with no external antenna needed. I can easily integrate such products in my current rig, yet the intimacy of the previous versions made me stay with no external input for a while. The decision of not having an external input was first broken in Compositor 4 Max for Live, where an external input is possible because of the internal Ableton Live routing options. The fact that Compositor 4 Max for Live is an audio effect device made me think that it was first attempt in tangent SDR from my side with the function, which doesn’t need an antenna to transmit the voice signal. Second tangent radio attempt will be standalone Compositor 8. I want to see Compositor 8 as a device to communicate through the RAD24 servers. Each of the cores of 72-core stack will route your voice communication to the recipient set by the Compositor navigation system. As Compositor 8 is an Avionics development, I allow managing such connections in 3d space in 3 degrees of freedom, which simplifies the setting of virtual antenna. The fact that new function is a radar type, no stochastic selection will be possible and Compositor 8 will function only in manual mode. Hypervisor v9 will listen not to an auxiliary radar ports, but to the v7 feeders such as RTC4k, RTC8k, RT-z8, RT-z16, RT-z32, RT-z64 and RT-z128. RAD24 and subsequent servers are mostly the breakdown of FM law and the final goal is to stop time-collision protocol in Compositor. It will not latch an external time-frame, while not allowing external injections. This way I will build my own resource for communication. That is why I refer to SDR terminology. However, I used this technology only for Morse code translations and did not transferred the voice over it. New function is a direct stack to the Ethernet, which, of course, simplifies SDR talks under server coverage. It means that no IP needed and I need to apply proper wavetables from the non-duplex modem. If this function covers the current version of DRM server, an update is needed to work with Compositor technology. New function is also a hyperbolic one, which is simple and effective restate for the FM core inside Compositor.

Compositor runs FM and function connects to the FM service. It creates a signal with the components, which are granularly time-space folded into the FM again, allowing to inject signal in between these two processes. The later function only covers the part of a spectrum, which is created at initial state. Think of it like a mains adapter: it is a pluggable adapter, which can potentially allow to communicate many DATA servers with different file-size and file-system structures. I had success of running 4 RAD24 servers and one was initiated from the HFS+ partition under Windows 7 OS. It means that technologically it is possible. I don’t see any obstacles in this technology, the only thing is to provide an easy and free way to stack different file-systems together on one, preferably Windows, machine.

Compositor gathers data of all pendulum stations in the Ethernet and send it back to the Ether for self-awareness. Compositor leads an analyzed DATA set and all the other parameter selection. When the critical pendulum load achieved, a time-collision happens rebuilding the whole Compositor structure. This way, I think about utilization of resources to run more Compositor cores inside one gen~ code. By the fact of stopping time-collision protocol, I want to stop the work of Compositor subnet mask switching mechanism. I’ve already broken the stochastic manipulator in Compositor core, which allowed me to stack more resources together. At the present moment, I think of Compositor only as a DRM station to hold licenses for subsequent users. I already published a chart where I name how many resources each station consumes. I name the auxiliary channel in this chart also and, from my point of view, it doesn’t consume any Compositor DRM resources. It is just a listening station. The only thing that consumes the process is any pendulum like mechanism. By stacking more pendulum resources, you are allowing more pendulum stations, either digital or mechanical. Any station will work. These stations inject tracks to media content by oversaturation of them.

To progress on the task of stopping the time-collision protocol in Compositor I should make wavetables of RAD24 accumulators at 22.05 KHz and then switch it on even faster regime of 44.1 KHz. If I’m unable to stop time-collision protocol in Compositor, I will be obliged to run servers at 22.05 KHz on this machine to protect time-collision reaching the opposite effect.

The solution is that RAD24 protects time-collision created. For network security with Compositor, the classification of pendulum processes needed. Such classification consists of working curve monitoring, that is why I estimate it on Compositor auxiliary channel display, while listening to wavetables.

RAD24 is a gate device for creating time-collisions. I can’t classify RAD24 as a pendulum process, because the cycle is broken. It is not an OS or license holder. As I said earlier, it is a protection mechanism for creating time-collisions. It means that it either opens or closes an access to the service of communication in Ethernet. By enabling it in administrator mode, I open an access to it only when the administrator works on PC. This way, I differentiate the work in time-collision between authorized person and the replica, that just latches the time-frame, because RAD24 detector assigns it to injection event. RAD24 is able to differentiate between an administrator and the replica, protecting my current communication.