Boosty – Forest People (FP mark emitted from the Ethernet)
Ruslan Yusipov Boosty and Exalted projects are valuable to the Russian Authors Society as they have previously unreleased and never heard routing paths. These projects have such routing paths, which are only heard of by the author. One such routing path is Boosty – Forest People produced in 2009 and never widely available to the public to the extent that only the author knows about its existence. Two unmastered versions of Forest People routing path loaned for emission. They are Dub version and Original mix. The routing path is produced in Boosty studio and remains unsigned and unlicensed to that day (unsigned at the present moment). In accordance with that I decided to make a fourth place emission of 281 routing tables. The emission named by FP mark has the most active navigation.
Using the dump of 5557 wavelets I made the job of translating 127 pages of English documentation on Russian language. This documentation is a continuation on CP-6137-960FX server development and is the modular switch of Compositor RTOS type installation manual. Using the injection of this dump I was able to do this job in a working week time. Injections were made by listening to a dump using insertion of Ultimate Ears ear monitors with dump playback of three times every four hours. The sum of injections was from 6 to 9 playbacks a day.
It was a robust experience and it forced me to do the job faster.
Ruslan Yusipov
You can taste the injection of this dump by listening to it by the link below:
Connection to RTOS from
geographically remote location
Two-week experiment of connecting to RTOS from geographically remote location is finished. During this two-week experiment I connected to RTOS from the territory of the other country using the RTOS dump, which is recorded using wavelets only. Dump includes 5276 routing tables and communicates with the authorization point of 18 June 2019. This is 192 kHz dump and it authorizes RTOS in all available bands of radio spectrum.
RTOS dump at 192 kHz MIB 5276 18.06.2019 FWLZhoekvarskaya cavity
Tests performed during experiment:
Satellite TV
channel matrix injection;
Routes
deployment to RTOS MIB routing tables using generic navigation;
Remote
connection to RTOS of other producers.
As the device for connection of RTOS I used rewired mobile phone on Android 4.4.2. It is rewired using four 64-bit middleware files, which are the part of RTOS MIB and are master filters for Ethernet injections. This mobile phone is autonomous in relation to other devices of that operator (the name of the operator retain unknown due to ethical considerations). In other words, it does not allow producing injection of a single routing table or routing path from the 3d party manufacturers. In attempt of 3d party applications to perform the injection, the mobile phone just stops this application operation. As stated earlier, this mobile phone can work only with Compositor RTOS 9.0.1 MIB.
Experiment 1: Satellite TV channel matrix injection
Using RTOS dump and the virtual optical port knowledge (in that experiment I used the configuration with virtual electric port), I injected the channel matrix of Russian digital TV. Experiment was successful attaining the full signal strength on the territory of sovereign state. Small bufferization errors are possible, because the host mobile phone, used to inject dump, does not allow using authorizations higher than z16. For this experiment I mainly used the CA (Cavity) emission, of the Cavity routing path. I used the orientation of virtual electric port in relation to signal constellation of satellite group, oriented on a Polar star. This experiment evidently shows, that for injecting of a channel matrix of satellite TV there is no need in dish type antenna, only the virtual electric port is needed and RTOS dump, loaded into a cell-phone. Experiment is conducted from a state of silent channel with no signal at all to injecting the channel matrix by dump with signal appearance, by the right orientation of virtual optical port on the Polar star.
Experiment 2: Routes deployment to RTOS MIB routing tables using generic navigation
In conductance with the first experiment the full navigation by all routing
tables included in RTOS dump was attained. The geographic position was selected
to achieve a bad signal reception. The object was situated in a cavity with mountains
height of 500 to 800 meters. In such cavity the signal propagation is strictly
limited, and so the technology of virtual optical port proved to be good.
Experiment 3: Remote connection to RTOS of other producers
In a trip, there was also checked the compatibility of 3d party manufacturers RTOS systems. In particular, virtual optical port was tested against Eutelsat 36B software, which performs the broadcasting on this region. The substitution of the channel matrix performed on the virtual electric port input, which performed a signal reception from mobile phone. The phone, on its own, performed the navigation by the routing tables, transferred through the dump. For this 9 to 12 dump injections during a day were made.