Compositor SoftwareCompositor Software

Tag : NRTOS

Simh-pdp11-unix-sysiii

By ruslany

Working with virtual images

Working with virtual images

Compositor NRTOS consists of dumps from other devices. That is, these are all devices that are within the scope of the RAD96 microkernel. When other devices try to penetrate a device that patched with RAD96 microkernel, the cache of the penetrating device is dumped to the Compositor Software cloud server. Thus, Compositor NRTOS commits occur. There are two types of commits: recorded commits and cached commits, which are stored in the cloud. Compositor NRTOS recorded commits consist of 10171 MAC tables. Compositor NRTOS cached commits consist of an indefinite number of commits, but you can rate them from the Apple Watch cache, which is more than 3 GB. These are all devices that dump their cache to the Compositor cloud and were written as MAC tables in the MIB, so they take up less space than the recorded commits. These cached commits are not only downloaded to one non-root device on the Compositor network, i.e. Apple Watch, but are also stored in the iCloud, Google clouds and interact with the autonomous system. The microkernel itself does not contain an operating system. Thus, in order to use the Compositor NRTOS on the 3rd-party machine, you must run the Niagara dump. However, I cannot create dumps more often for economic reasons, and thus cached commits contain a newer operating system than the OS contained in the dump. The Compositor microkernel runs NRTOS in virtual images. The content and placement of such an image should remain unknown for cybersecurity reasons. Therefore, whenever you are asked to reveal the location of the image, you should know that it is a scammer. And when a third-party device penetrates the image, the microkernel dumps the scammer’s operating system as a commit to the servers. Thus, I am working on applying patches, the main one of which is to hide the work of Compositor NRTOS in the operating system image. I am working on encryption schemes to make such images more reliable and inaccessible to third parties. I’m working on Compositor NRTOS by committing after the system is penetrating. However, I do not have records of penetration into the Compositor microkernel itself, as such attempts are inappropriate due to the full cycle of development of this architecture. And, thus, it remains impossible to penetrate the Compositor microkernel, as it is designed to the level of an autonomous system and contains all the patches found in such operating systems. The main weakness is the Compositor NRTOS itself, because it is an additive dump of all penetrating systems.

By ruslany

NPO Compositor adapted NRTOS 9.0.2

NPO Compositor adapted NRTOS 9.0.2

It took more than two years to adapt the Compositor 9 software from Compositor Software into Russian language. NPO Compositor has done a great job of introducing new functions and protocols into Compositor 9. The interface and documentation has been translated into Russian language and consists of chapters on IP switching and routing (2700 pages in total). It allows classifying this software as network real-time operating system (NRTOS). Compositor NRTOS 9.0.2 package consists of the real-time operating system itself with a graphical user interface executed on MaxMSP, Niagara software modem, which is a sample of a real-time moment (into which this sample was recorded) made with MaxMSP also, and an Android application RAD96, which inherited its name from the Compositor 9.0.1 main module (in 9.0.2 a22 assembly an extended version of this code is called VSF – virtual switching framework). All three versions have the same documentation as they access the same functionality. The difference is that RAD96 is an autonomous system and contains many more extensions that have not yet been issued. Compositor NRTOS 9.0.2 comes with 9134 extensions of management information bases, which were issued from the autonomous system RAD96 during the production of documentation. Niagara 32 software modem also contains a dump of this database (9134 routing tables). We also succeeded in classifying such an interface: by the type of execution, it can be considered a switching router, in contrast to the Compositor 7, which is considered a switch.

You can see the Russian language interface of Compositor 9.0.2 build a22 below:

Compositor NRTOS 9.0.2
Compositor NRTOS 9.0.2 channel matrix

The command language in documentation can be used within amateur radio terminal software such as TrueTTY on Windows and DroidRTTY on Android. This means that you cannot program the NRTOS directly (only via MaxMSP graphic user interface) but you can issue this commands through a teletype operator working in your autonomous system. Such an operator usually is a part of telegraph services still acting to the present moment. It is the only possible way to reprogram an autonomous system.

Seven protocols, implemented by NPO Compositor for version 9.0.2, enable communication in the Ethernet network. At the testing stage Compositor 9.0.1 was used mainly for packet protocols of amateur radio, but now in version 9.0.2 communication is carried out in the Ethernet network using the protocols used for switching and routing in this network. NRTOS includes 6 interior gateway protocols such as RIPv1, RIPv2, OSPF, OSPFv3, RIPng, EIGRP and one exterior gateway protocol for communication between autonomous systems (BGP – uses IPv4 version of the protocol). In addition, external communication is possible through 6-to-4 GRE tunneling.

Compositor 9.0.2 implements stateful and stateless NAT64, it can be used to create L2VPN and L3VPN services by exporting firmware in WAV and AIFF formats. Conversion from IPv4 to IPv6 is done on the fly in the NRTOS and makes it possible to map a single IPv4 address to multiple IPv6 destinations. As you can see from the Compositor 9.0.2 interface, it is a BSR router and is responsible for loading the system. Such a system consists of extensions that allow the server to participate in various workgroups. Compositor 9.0.2 is the installation program for the CP-6137-960FX server, to which this site is dedicated. This server is the only machine capable of generating emissions from the autonomous system RAD96 and this is its main value.

By ruslany

Compositor Software extended services set

Compositor Software extended services set

Compositor Software server has confirmed its success in supporting the remote workflow. Even the set of services that was named in a previous post ensured the smooth operation of all network resources. However, for a full-fledged work, this was not enough. I resumed work on the implementation of all services from the Network Real-Time Operating System (NRTOS) versions 3.0.3 – 9.0.2. Since the main task of the server is to create a network map with a high depth of topological viewing, I implemented two more MDL12 services and feeders of the 3rd version, such as AI-RT1024, FF8, N9000, TC25, which allow working with corporate PDH and SDH network hierarchies and broadcast them in VLAN using ARP for the analog IP radio interface.

Thus, a common set of services now:

7 RAD36 servers
2 MDL12 servers for radio telescope and IPTV
1 VoIP server
4 FF8 Feeders for ARP Protocol
4 AI-RT1024 Feeders for SDH
4 N9000 Feeders for PDH
4 TC25 Feeders for VLAN
1 RAD96 server extension to work with the Niagara igniter (VPN)
1 RAD96 Autonomous System

Protocols:

STC2k – X.25
RTC4k – RIPv1, IS-IS Layer 1
RTC8k – RIPv2, IS-IS Layer 2
RT-z8 – OSPF
RT-z16 – OSPFv3
RT-z32 – BGP
RT-z64 – RIPng
RT-z128 – EIGRP

All services are compiled and operate at the kernel level of the operating system. Only this approach allows maintaining the scalability of services in a hyperconverged environment. It do not lack of services, everything looks very worthy at the level of a serious manufacturing company. This approach provides the server with the emitted database and allows you to generate new links on the fly without the need to record and enter them through the injector.

Simh-pdp11-unix-sysiii
Working with virtual images