RTOS version 9.0.2 a16 assembled
It took more than 1.5 years to work on solving the problem of Compositor AV Extended interface break-through (which is the main interface of RTOS). This problem occurred during the dial-up of routing tables for establishing a tunnel connection. The way to recreate it: first, RTOS protocols are dialed by injecting routing tables into them, and then RTOS interface is turned off and on again. When the interface turns on, the entire database of the routing tables, which fills the buffer, floods into the interface, which cause a man in the middle attack, that is, an attacker gained access to the interface and induced it to inherit the route of its device. During this time, I made emissions in an attempt to understand how to solve this problem and, finally, it is solved. Now it is possible to configure each protocol from the passive interface state and take a pause while turning interface off in order to listen to the remote channel, and then go into passive mode again. Thus, you can achieve resolution from each of the seven RTOS protocols.
In Compositor RTOS 9.0.2 a16 it is possible to set one interface identifier for the entire protocol configuration session, and to do the training only in passive mode, as previously assumed. The next task in debugging RTOS is the fight against constants. It is one of the most important tasks of both radio security and cybersecurity. Through the introduction of constants, Ethernet devices position themselves, occupying the most convenient places in the network topology. This mainly applies to devices that frequently change IP addresses, such as smartphones and laptops. In order for the RTOS core to take priority of the host, the device must serve as a host for many devices. This is confirmed by Compositor Software database, which has been expanded to 8156 management information bases (MIB). Now that the Compositor RTOS manages a database of more than 8,000 devices, CP-6137-960FX server can be considered as a host, regardless of its physical connection to the network, through the Internet service provider. In fact, what I’m doing now is the continuation of the development to include more VLAN’s and create a VPN network segment. In the latest build, I have already managed to “shoot” the packets in several sessions. You can hear one of them below:
This method of feeding wave tables is a priority for communication devices, because it helps to break the synthetic ether by packet transmission. Since there are many packets, and each of them carries different information at different moments of time, the semantic base of the Compositor RTOS language is explained. In view of this, it makes no sense to enter the names of packets in the main interface, and I need to leave them in a VRF tables section only, focusing specifically on the tunnel windows. In addition, this approach allows using the Compositor RTOS interface as a tunnel interface with the ability to connect to multi-channel protocols, such as OSPF.