Compositor SoftwareCompositor Software

Tag : Compositor Library

By ruslany

Compositor Software news 25.07.2018 – 06.08.2018

Compositor Software news 25.07.2018 – 06.08.2018

More than 6 months I have been working on revealing the leakage in Compositor kernel. Exposing all oscillators and transferring the first oscillator in static mode, I discovered that many resources released in computer RAM (DDoS attack). It lowers the uninterrupted device work to 4 days taken that paging file is set to a size of 64 GB. Increasing the number of oscillators to 32 on each of the layers (Rt, Sr, Tr) and meeting a condition of counters, the emissions equaled to 14 GB a day. In accordance to this, I decided to shut down the peering network and return to RT-z128 kit layout as in Compositor v5 Hypervisor. In this layout the main ports are closed for inbound and outbound connections. Only addresses starting from 192, which are assigned to local machine, are available. It means that a new patch remains the VLF connectivity, but doesn’t allow devices to connect for information exchange. It is possible to exchange information from the local machine for the patch user, but not a remote access user. In particular, such decision is motivated by a hacker attack on RAD96 server. The intruder used the open ports of the windowing device and sent spam from Internet Provider IP address. With closed ports the little leakage on real-time generator is possible, but it is not accounted due to the slow regeneration speed.

To restart the peering network I attempted the following solution: due to closing of the ports, only Compositor Networks ether aggregators take part in peering. This means that feeding ether aggregator wavetables in the peering patch through the Compositor v9 Hypervisor, I create a communication service between all Compositor Library wavetables. However, many Ethernet devices can’t use Compositor peering network as it was at the beginning of the peering network creation. As a conclusion, I can exclude peering from Compositor kernel load test and use multi-kernel mode, but this type of test has very long loading time (up to 4 hours for full load).

Bounded by Royalty project, the database of server emissions in form of wavetables grown to 2627 ether aggregators. The database was expanded by ether emission of Exalted – Cavity track (Ruslan Yusipov, CEO of Compositor Software project). The whole volume of Cavity track emission is 328 wavetables. Wavetables contain radio repeaters, transmitting stations, Ethernet routers, injectors and other ether equipment. It was possible to increase the Compositor v9 Hypervisor regeneration speed up to 150-omega by applying a new peering network patch. This influences only Compositor AV Extended auxiliary channel and doesn’t cover the generic feeder modules. It was made aiming the faster composition speed of the whole pool of Compositor Networks ether aggregators. The necessity in uniform composition caused by big amount of wavetables in Compositor Library. The application of the new patch after the attack was made unnoticeably, because this solution proved to be successful in 2017. It was clear right from the beginning that hackers aim is to limit the communication circle of network devices to Compositor Library pool and its real emission. From one side, if the emission is made every time when server communicates, then there will be much more devices in Compositor Library. Each streaming playback with working patch is a communication with its transmitting devices. Taken this, it is needed either to shut down any internet activity from the patched machine or to make emissions of the whole material, which is played in browser resulting in big amounts of information. From the other side, with open ports it is possible to connect not to the virtual network, created by composition feeding, but directly to all transmitting devices, which reside in Ethernet without the need to make emissions so often.

By ruslany

Compositor Library

Compositor Library

On 18 May, 2018 I released 6 extensions of Compositor Library. The following loops released for purchase: AB, BD, CG, RY, SR, SC. AB (Alpha Bounces) is a final library in the preparation set for Hypervisor v7. It consists of 136 loops. This set of 4 libraries consists also of MB (Mesh Bounces), BB (Beta Bounces), HB (High Bounces), which were released earlier. They are included in the package, which goes with Compositor v6 and Compositor v7. It allows entering the radio ether without the external antenna usage. You can use this set without Compositor internal generators and route only these loops into auxiliary channel, using the decks, which Compositor v4, v6, v7 have. Alpha Bounces is a final test before RAD24 (ODU – outdoor unit) release. These feedbacks of non-duplex modem were taken before introducing the polynomial on the output cascade of Compositor algorithm. The next loops were produced to test non-linear processing on the output cascade. They address the protective abilities of the system before and in a moment of wavetables application. Such loops are: 1) BD (Bass Drum), where the non-duplex modem feeded by material with a synthetic kick drum; 2) CG (Creations Glory); 3) RY (Ruslan Yusipov Loops); 4) SR (Sample Rate Loops); 5) SC (Silent Creek). All loops performed as the emission bounded by Royalty project. The main task, when the BD Loops were recorded, was to receive feedbacks with RAD24 server working. RAD24 algorithm successfully sustained these loops feeding and I decided to extend the peering network to 96 points and produced the RAD96 server. Bounded by this server feedbacks the RY (64 loops), CG (155 loops), SR (47 loops) and SC (209 loops) were produced. RAD96 algorithm successfully coped with these emissions. After these feeding sessions, I decided to produce Hypervisor v9. Starting from version 9 of my software, the Library will be supplied as a separate purchase. You can buy the Library in parts, orienting by loops production history, which I will post in this blog.