Compositor SoftwareCompositor Software

Tag : ARP

By ruslany

Compositor Software extended services set

Compositor Software extended services set

Compositor Software server has confirmed its success in supporting the remote workflow. Even the set of services that was named in a previous post ensured the smooth operation of all network resources. However, for a full-fledged work, this was not enough. I resumed work on the implementation of all services from the Network Real-Time Operating System (NRTOS) versions 3.0.3 – 9.0.2. Since the main task of the server is to create a network map with a high depth of topological viewing, I implemented two more MDL12 services and feeders of the 3rd version, such as AI-RT1024, FF8, N9000, TC25, which allow working with corporate PDH and SDH network hierarchies and broadcast them in VLAN using ARP for the analog IP radio interface.

Thus, a common set of services now:

7 RAD36 servers
2 MDL12 servers for radio telescope and IPTV
1 VoIP server
4 FF8 Feeders for ARP Protocol
4 AI-RT1024 Feeders for SDH
4 N9000 Feeders for PDH
4 TC25 Feeders for VLAN
1 RAD96 server extension to work with the Niagara igniter (VPN)
1 RAD96 Autonomous System

Protocols:

STC2k – X.25
RTC4k – RIPv1, IS-IS Layer 1
RTC8k – RIPv2, IS-IS Layer 2
RT-z8 – OSPF
RT-z16 – OSPFv3
RT-z32 – BGP
RT-z64 – RIPng
RT-z128 – EIGRP

All services are compiled and operate at the kernel level of the operating system. Only this approach allows maintaining the scalability of services in a hyperconverged environment. It do not lack of services, everything looks very worthy at the level of a serious manufacturing company. This approach provides the server with the emitted database and allows you to generate new links on the fly without the need to record and enter them through the injector.

By ruslany

Compositor v3 RTOS – analog radio interface for IPv6 Protocol

Compositor v3 RTOS – analog radio interface for IPv6 Protocol

Compositor v3 Hypervisor Radio Shack software updated to RTOS. Now, Compositor RTOS v3.0.3 supports numerous new features, such as:

  • Protocols implemented:
    • RTC8k = IS-IS Level-2
    • FF8 = ARP (Address Resolution Protocol)
    • TC25 = VLAN (IEEE 802.1aq)
  • Hierarchies added:
    • AI-RT1024 = SDH STM-x
    • N9000 = PDH E1
  • Other features:
    • TCP/IP protocols stack implemented
    • TCP/IP window added
    • EUI48 table added
    • BPM now is the network field parameter of IP-address
    • Network field includes 2^13 to define as IPv6-address
    • All modules renamed to reflect new functionality
Compositor v3.0.3 RTOS

The main reason I made the update is to reveal the FF8 (ARP) and TC25 (VLAN) protocols work. That is why the working routine in Compositor RTOS v3.0.3 looks as following:

At the beginning, I set the time to reach the destination point, where the network deployed. I make this by setting deployment time in degrees from -180 to 180, which is the range from 0 to 60 minutes. Then I set the IP-address of destination interface the following way: the part of IP-address, pointing on the interface ID is set stochastically or manually. Multiplier in IPv4 sets the second field, which is the part of network and host. That is why the highest network for Compositor RTOS in IPv4 is 255.4.0.0. When I’ve reached the destination network and I’ve got the closed feedback loop on the loop-back interface output, I define the autonomous system type, which it belongs. I do this by enabling VLAN and ARP protocols and resolving the assignment of IPv4-addresses to the network devices of this autonomous system. I look into the IPv4-addresses of next-hops and reveal the number of such next-hops before returning to the first hop. The more hops IS-IS Level-2 protocol makes, the larger a metric of the destination network (autonomous system). This way I reveal all peers of the destination network.

When I define ABR (area border router) of that network using IS-IS Level-2 protocol, I turn the VLAN and ARP protocols off and start to translate this device information into IPv6 network, by enabling TCP/IP protocols stack. This process allows merging IPv4 networks with IPv6 networks and to expand the influence of my database into IPv6 protocol.