Compositor SoftwareCompositor Software

Tag : IS-IS Level-2

By ruslany

Compositor v3 RTOS – analog radio interface for IPv6 Protocol

Compositor v3 RTOS – analog radio interface for IPv6 Protocol

Compositor v3 Hypervisor Radio Shack software updated to RTOS. Now, Compositor RTOS v3.0.3 supports numerous new features, such as:

  • Protocols implemented:
    • RTC8k = IS-IS Level-2
    • FF8 = ARP (Address Resolution Protocol)
    • TC25 = VLAN (IEEE 802.1aq)
  • Hierarchies added:
    • AI-RT1024 = SDH STM-x
    • N9000 = PDH E1
  • Other features:
    • TCP/IP protocols stack implemented
    • TCP/IP window added
    • EUI48 table added
    • BPM now is the network field parameter of IP-address
    • Network field includes 2^13 to define as IPv6-address
    • All modules renamed to reflect new functionality
Compositor v3.0.3 RTOS

The main reason I made the update is to reveal the FF8 (ARP) and TC25 (VLAN) protocols work. That is why the working routine in Compositor RTOS v3.0.3 looks as following:

At the beginning, I set the time to reach the destination point, where the network deployed. I make this by setting deployment time in degrees from -180 to 180, which is the range from 0 to 60 minutes. Then I set the IP-address of destination interface the following way: the part of IP-address, pointing on the interface ID is set stochastically or manually. Multiplier in IPv4 sets the second field, which is the part of network and host. That is why the highest network for Compositor RTOS in IPv4 is 255.4.0.0. When I’ve reached the destination network and I’ve got the closed feedback loop on the loop-back interface output, I define the autonomous system type, which it belongs. I do this by enabling VLAN and ARP protocols and resolving the assignment of IPv4-addresses to the network devices of this autonomous system. I look into the IPv4-addresses of next-hops and reveal the number of such next-hops before returning to the first hop. The more hops IS-IS Level-2 protocol makes, the larger a metric of the destination network (autonomous system). This way I reveal all peers of the destination network.

When I define ABR (area border router) of that network using IS-IS Level-2 protocol, I turn the VLAN and ARP protocols off and start to translate this device information into IPv6 network, by enabling TCP/IP protocols stack. This process allows merging IPv4 networks with IPv6 networks and to expand the influence of my database into IPv6 protocol.

By ruslany

Compositor RTOS from PRO 1 to 9.0.2

Compositor RTOS from PRO 1 to 9.0.2

I’m here to inform you that Compositor Software is about to reveal the whole working routine on OS right from Compositor PRO v1. First, I revealed the protocols used in Compositor v9. Now, I know that counters in VSF platform scan autonomous systems in two formats: asplain and asdot+.

Here how it looks:

Compositor v9.0.2 RTOS

I know the fact that each routing table is a MIB and represents one autonomous system. As you see autonomous systems (AS) divided on L1 (OSI model Layer 1), L2 (OSI model Layer 2) and L3 (OSI model Layer 3) with L3 being the rarest. Asplain just scans through the whole list of 4-octet AS’s while asdot+ in Compositor is somewhat different from 4-octet asdot+ format. It counts this way: the number at the left is the asplain/2 and the number after the dot is a multiplier of how many times this value must be taken going from 0 to 100. So in fact there are 214748364800 AS maximum in the list. I have got only 7539 AS via MDL12 modem, because of the fact that MDL12 is neuro interface and can’t work as autonomous harvester of AS’s. It receives flows I accounted via VSF aggregation, but I should receive them manually. This in fact proves that gap exists between exported flows and archived ones. I exported in total 1793043 flows but recorded only 7539 of them.

Due to this, I proceed with Compositor v7 revelation. I updated Compositor WS Extended interface to version 2.0 with NTP-server, layers, protocols information revealed. I also adjusted the maximum bpm value to 8192 bpm to include IPv6 addresses and made the same TCP/IP window as in Compositor v9.0.2. This way I made RTOS preemptive from version 7 to version 9. However, protocols used in Compositor v7 are slightly different:

RTC4k = IS-IS Level-1
RTC8k = IS-IS Level-2
RT-z8 = OSPF
RT-z16 = OSPFv3
RT-z32 = BGP

The last three protocols are the same as in RTOS 9.0.2. This in fact reveals the ‘STL’ in STL1212 virtual machine, which shipped in original Compositor v7. STL means studio-to-transmitter link. 1212 is the number of multiple input x multiple output channels and should read as STL MIMO12x12. So in fact, STL gives connection to 12 positive UTC+ transmitters and 12 negative UTC- transmitters, which proves NTP-servers information from Compositor WS Extended 2.0 interface:

Compositor v7.0.2 RTOS

You can view the transmitters on the STL1212 spherical map as lighted dots. Blue dots show the networks to which they broadcast packets. As first noted in MDL12 product page packets are windows functions (this is finally proved now). Now, I need to know which packets Blackman, Nutall etc. windows relate to the selected protocols. I’m mainly interested in Hello packets and Trap packets. But to know this, is just a matter of time, because I will proceed with Compositor v3 Hypervisor Radio Shack and will upgrade it to RTOS also. So the whole project will be preemptive since version 3, when I started the transition on Max 6 Gen~ platform.

So basically all evident that if RTC8k is main virtual machine in Compositor v3 it is either RIPv2 or IS-IS Level-2. RIPv2 is a distance-vector algorithm and is different from preset system used in SASER interface (however, it is the same with 3-deg of freedom Compositor AV extended interface from version 9). So it is link-state IS-IS Level-2 protocol, which is used to connect autonomous system areas. TC25 is a basic VLAN protocol, while AI-RT1024 is STM-4 frame, FF8 is ARP (Address Resolution Protocol) and N9000 is PDH E4+ hierarchy.