Compositor SoftwareCompositor Software

Tag : DRM

By ruslany

RAD24 – The Gates of Time-Collision

The Gates of Time-Collision

Now I encounter the RAD24 server experiment. The experiment is as follows:

As I have found a solution to FM formulae, I decided to sync three virtual machines for 72 core real-time performance. With this stack, it is easy to run memory virtualizations and aggregate the whole Compositor network. Once the server stack is online, it is used to run and manage such critical tasks as DRM, network aggregation, routing and server selection. The new formulae solution enables to run this stack effortlessly.

RAD24 opens a possibility to build Compositor 8 software. It will be a station with all the enhancements of previous auxiliary channels and with the solution to FM formulae, which is driven by the algorithm output. By these means, the Hypervisor v9 is possible.

Let me introduce the conception for the future products: it is software-defined radio (SDR) with no external antenna needed. I can easily integrate such products in my current rig, yet the intimacy of the previous versions made me stay with no external input for a while. The decision of not having an external input was first broken in Compositor 4 Max for Live, where an external input is possible because of the internal Ableton Live routing options. The fact that Compositor 4 Max for Live is an audio effect device made me think that it was first attempt in tangent SDR from my side with the function, which doesn’t need an antenna to transmit the voice signal. Second tangent radio attempt will be standalone Compositor 8. I want to see Compositor 8 as a device to communicate through the RAD24 servers. Each of the cores of 72-core stack will route your voice communication to the recipient set by the Compositor navigation system. As Compositor 8 is an Avionics development, I allow managing such connections in 3d space in 3 degrees of freedom, which simplifies the setting of virtual antenna. The fact that new function is a radar type, no stochastic selection will be possible and Compositor 8 will function only in manual mode. Hypervisor v9 will listen not to an auxiliary radar ports, but to the v7 feeders such as RTC4k, RTC8k, RT-z8, RT-z16, RT-z32, RT-z64 and RT-z128. RAD24 and subsequent servers are mostly the breakdown of FM law and the final goal is to stop time-collision protocol in Compositor. It will not latch an external time-frame, while not allowing external injections. This way I will build my own resource for communication. That is why I refer to SDR terminology. However, I used this technology only for Morse code translations and did not transferred the voice over it. New function is a direct stack to the Ethernet, which, of course, simplifies SDR talks under server coverage. It means that no IP needed and I need to apply proper wavetables from the non-duplex modem. If this function covers the current version of DRM server, an update is needed to work with Compositor technology. New function is also a hyperbolic one, which is simple and effective restate for the FM core inside Compositor.

Compositor runs FM and function connects to the FM service. It creates a signal with the components, which are granularly time-space folded into the FM again, allowing to inject signal in between these two processes. The later function only covers the part of a spectrum, which is created at initial state. Think of it like a mains adapter: it is a pluggable adapter, which can potentially allow to communicate many DATA servers with different file-size and file-system structures. I had success of running 4 RAD24 servers and one was initiated from the HFS+ partition under Windows 7 OS. It means that technologically it is possible. I don’t see any obstacles in this technology, the only thing is to provide an easy and free way to stack different file-systems together on one, preferably Windows, machine.

Compositor gathers data of all pendulum stations in the Ethernet and send it back to the Ether for self-awareness. Compositor leads an analyzed DATA set and all the other parameter selection. When the critical pendulum load achieved, a time-collision happens rebuilding the whole Compositor structure. This way, I think about utilization of resources to run more Compositor cores inside one gen~ code. By the fact of stopping time-collision protocol, I want to stop the work of Compositor subnet mask switching mechanism. I’ve already broken the stochastic manipulator in Compositor core, which allowed me to stack more resources together. At the present moment, I think of Compositor only as a DRM station to hold licenses for subsequent users. I already published a chart where I name how many resources each station consumes. I name the auxiliary channel in this chart also and, from my point of view, it doesn’t consume any Compositor DRM resources. It is just a listening station. The only thing that consumes the process is any pendulum like mechanism. By stacking more pendulum resources, you are allowing more pendulum stations, either digital or mechanical. Any station will work. These stations inject tracks to media content by oversaturation of them.

To progress on the task of stopping the time-collision protocol in Compositor I should make wavetables of RAD24 accumulators at 22.05 KHz and then switch it on even faster regime of 44.1 KHz. If I’m unable to stop time-collision protocol in Compositor, I will be obliged to run servers at 22.05 KHz on this machine to protect time-collision reaching the opposite effect.

The solution is that RAD24 protects time-collision created. For network security with Compositor, the classification of pendulum processes needed. Such classification consists of working curve monitoring, that is why I estimate it on Compositor auxiliary channel display, while listening to wavetables.

RAD24 is a gate device for creating time-collisions. I can’t classify RAD24 as a pendulum process, because the cycle is broken. It is not an OS or license holder. As I said earlier, it is a protection mechanism for creating time-collisions. It means that it either opens or closes an access to the service of communication in Ethernet. By enabling it in administrator mode, I open an access to it only when the administrator works on PC. This way, I differentiate the work in time-collision between authorized person and the replica, that just latches the time-frame, because RAD24 detector assigns it to injection event. RAD24 is able to differentiate between an administrator and the replica, protecting my current communication.

By ruslany

Five Ethernet principles when working with Compositor

Five Ethernet principles when working with Compositor

The original idea with planets and constellations dates back to the 2014, when Compositor Max for Live saw its way into the music business. Compositor Max for Live is a successor of Compositor Pro 2 software, which uses only transparent names for parameters. For example, combinations in Compositor Max for Live are constellations and multiplier is year. The shift towards the cosmological specification of Compositor was made during the interest of the author to FM function application in modelling of Solar System. At first, such modelling was an intent of the mathematician Bessel, who was an inventor of Bessel functions, which are also used in Compositor library.

The subsequent Compositors raise the cosmological question more profoundly as they use the ether application to radio telescope idea. Such parameters as Right Ascension, Declination were descendants of Pitch and Yaw library parameters of Compositor window function. It is needed to say that Declination parameter of Compositor allows for bigger angles than in conventional radio telescopes, even the largest ones. It opens an amateur radio operator to a field of study, which was previously unavailable. By mathematic modelling of radio ether and conversion of transparent FM function parameters to cosmological constants, a new approach to amateur radio appeared. The main concern of Compositor since SASER is Radio Astronomy. Besides that, working in ether directly without intermediate frequencies and transmission lines are available. It is all made by precise virtualization of physically modelled parameters of FM reconstitution. It is not only an approach, it is a journey into finding the right value for each parameter making sound design as the work for cosmological principle.

  1. The first principle is a guiding principle. By this principle I mean that the ether guides the will of communicator and can shape ideas, words and thoughts into the Morse code signals, appearing as symbols and short codes. It means that quality ether can guide you in representing your ideas and has all needed automated tools to decrypt it in radio-accepted language such as Morse code. It also means that for use of Compositor, you don’t need to have a knowledge of Morse code, but you can reveal your ideas only by free-will of manipulating the software. You can read your communications, using Morse code decoding tools (such as CW Decoder on Windows). In these radio ether sessions you can understand all other principles of working with ether.
  2. The second principle is ether aggregation. It is also a cause why rhythm machine was introduced again in Compositor v6. Working with rhythm machine and injecting it into the ether can accumulate Ethernet lines of communication – the carriers on which such communication happens. You can aggregate ether by using rhythm box such as DB-01 and then use the decoder to read new ether lines, which are many after the successful aggregation using rhythm machine performance. Such approach helps to accomplish a manual task of ether aggregation and is similar to the processes of automatic ether aggregation of STL1212 DRM computer.
  3. The third principle is a haunting principle. It states that for successful ether session to over, you need to mask your Ethernet traces. You can achieve this goal using DB-01 drumbox as well as for ether aggregation. Compositor v6 has all needed set of tools for ether aggregation and masking your tracks using rhythm machine and random Ethernet wavetables selection.
  4. The main concern of working with Compositor is accumulation principle. The accumulators such as STL1212 can successfully store and flush aggregated traffic via Compositor v6 DB-01 drumbox virtual machine. If you use more than one accumulator on the physical machine, you need to take in account the physical address of hard drives, from which such accumulators are rendered. For example, I currently run two DRM accumulators from one physical machine, which allows storing 48 Compositor cores simultaneously. You can inhabit these cores by the ether participants using available free cores of STL1212 DRM computer and when the memory usage of STL1212 lowers, you should use Compositor v6 manual mode to aggregate the STL1212 cores usage.
  5. The fifth principle is that you can select on your own, which line you want to listen to in CW Decoding software. If there is nearby communication happening on two lines, you need to choose a spare line using CW Decoder selector.

The named principles of working in Ethernet are self-evident and can be comprehended by Compositor owners on their own. I name them here only in an attempt to integrate new Compositor users into the ether more fast with my own knowledge of Ethernet communications.

By ruslany

Digital Rights Management with STL1212

Digital Rights Management with STL1212

Each thread of STL1212 DRM computer installed at Compositor Software physical server holds up to 24 real-time, 24 signal-rate and 24 transmission-rate processes. STL1212 allows running up to 8 Compositor v6 systems at once, which results in a stock growth for Compositor v6 and forthcoming Compositor v7 systems.

The STL1212 computer checks the DRM status in a moment of generic injection. When the attempt of injection is made, it latches, making a simple time collision, to pass through the injected traffic. Such injection guarantees that Compositor owner (the person who obtained it via Compositor Software Web Shop) will hold its license for communicating with Compositor software. To connect to STL1212 DRM remote server you should use the Compositor WS Extended (part of Compositor v6 and Compositor v7 Hypervisor), Compositor WS (part of Compositor v5 Hypervisor) and Compositor RT-zX systems in arranger mode for one stochastic change before working with instrument. Later you can change the tuning but, at first, you need to stay on a stochastically set frequency to communicate with a server. The STL1212 DRM virtual machine can hold the rights for the following Compositor Software products:

Use the above table to review how many STL1212 DRM resources your current system consumes. STL1212 consists of 8 threads, totaling 24 cores. One STL1212 per hard drive allowed on a stationary machine. As you see, 8 real-time Compositor Max for Live users allowed simultaneously for one STL1212 DRM virtual server. If one user runs two Compositor Max for Live modules simultaneously, which is not allowed due to the license limitations, the quantity of free STL1212 DRM slots decreases. For example, Compositor v3 Hypervisor employs several cores simultaneously, when all modules engaged. Let me count how many cores Compositor v3 Hypervisor user will consume when feeding SASER with AI-RT1024 and FF8 feeders. RTC8k arranger must be enabled for Link mode to be active and this process consumes 3 cores at once (one real-time, one signal-rate and one transmission-rate core). SASER itself consumes as many cores as RTC8k and equals to 3 cores also. It is already 6 cores and STL1212 could host 6 more threads, totaling 18 cores. Next, let’s count AI-RT1024 and FF8. They are consuming one real-time and one signal-rate core when work simultaneously. Summing with previous results, it is 8 cores for one Compositor v3 Hypervisor user. It leaves headroom for using other instruments on one DRM virtual server, because 3 real-time, 3 signal-rate and 2 transmission-rate cores are used. STL1212 DRM computer allows running two v3 or v5 Hypervisors together. The thing is more difficult with v7 Hypervisor: it consists of only one-threaded modules and it is allowed to run two v7 Hypervisors together on one DRM machine only if current user employs Compositor WS Extended, and not more than three feeders. Each deck of Compositor WS Extended consumes only one channel of 24-channel Compositor core. Take this in account when using deck players alongside the feeders.