Non-Linear Time-Invariant Autonomous System

Non-Linear Time-Invariant Autonomous System

RAD96 Autonomous System
RAD96 Autonomous System

The 4th order transfer function an ideally suited for multithread mode was simplified to the 2nd order to achieve the autonomous system. The 3rd and 4th order coefficients turned the interconnection on the kernel level on for both channels at the same time, which caused friction, allowing to spread its impact on 96 channel network. This way, the process of system powering was imitated, namely self-feeding. For licensing the system on higher working frequencies of the audio driver, it was needed to turn the visual driver and the peering network off without touching the 4 layers of the kernel. This way, the full autonomous system achieved. In other words the system autonomous up to the moment when visual driver and peering network of algorithm with 96 oscillators are connected. The system stationary, because uses time function variable on the transfer function input, which, by the way, has its own time continuous component also, performing DC-offset by the y-axis. This way, the Compositor kernel 8.5.6 algorithm reaches both conditions of time-invariance and autonomy. The system is non-linear, because transfer function performs transposing with exponential relationship. This way, system of the kernel and loader combines in non-linear time-invariant autonomous system, which is the continuity on the previous post intervention of universal module with temperature sensor.