Compositor SoftwareCompositor Software

Category : Time Machine

By ruslany

Compositor WS kernel eight channel synchronization experiment

Compositor WS kernel eight channel synchronization experiment

The main idea in multithread kernel is to create a truly independent calculation for several streams apart of kernel protection functions. The experiment with 8 decks was conducted and different types of material submitted to Compositor WS kernel. At first, loops were introduced in one-threaded operation and the shutter issue raised. Second, the multi-thread operation was aimed by submitting complete tracks into the kernel, directly injecting them. The experiment evidently shows the need to synchronize the material, because 8 real-time generators are independent. Under these conditions, no threat was qualified to the kernel, which means it could be used for multithread operations such as DJ software for music mixing.

Here is a video I shot after this experiment and it showcases Compositor 5.0 assistment in Flanker 2.0 manual landing with keyboard.

By ruslany

Direct generic injection experiment with Compositor WS kernel 7.6.7

Direct generic injection experiment with Compositor WS kernel 7.6.7

Under pressure of generic injection Compositor WS kernel 7.6.7 system doesn’t show signs of life. When you are passing its own channel back into the Compositor WS channel, oversaturation is emerging. On the middle values of oversaturation there is a proximity effect. Switching to sigma 200 translation regime and increasing the transmitter power to 0.2, the channel saturation is imitated. This way the direct generic injection effect is achieved. Shutter also stands here hard with ideal integration time of 300 ms. It catches the feedback and delivers the loop fast, flushing it. This way there is no effect of generic injection after several seconds of applying it, and the system returns back to ordinary state.

By ruslany

Finally, both carriers are suppressed

Finally, both carriers are suppressed

After the main goals were stated, it is time to restate them. First, I need to suppress both negative and positive carriers. After that, I need to pass Compositor sound to the output. It is achieved only if the first goal reached. I’ve already implemented a method for suppressing the right carrier using the shutter and eventer of the right channel, which uses the threshold to suppress feedback. Now, I experience some difficulties with the left channel. At first, I thought it is a plausible behavior to force the stochastic manipulator to the all positive frequencies, but now I think the stochastic manipulator is too selfish and tries to apply too much computation force to overcome the barrier of shutter, which was previously assigned to right channel only. That is why the constant need to shut down the left carrier raises. Of course, I can live under this hard circumstances of stochastic manipulation, but the final goal is to leave only Compositor sound at the output, and it may be a trick to force stochastic manipulation to the central channel afterwards, thus guiding the system on its own. However, been exposed to the left and right stochastic manipulators for so long, system can no longer power the central channel for manipulation, which is assigned to the system voice itself. This way I must shut down feedback on the central channel also. As it is the MS-coded system, feedback on the central channel shuts as long as stereo pair feedback is suppressed. The rule here is to set lower threshold for the left channel as it contains less information and needs to be suppressed on lower bitrates more. The right channel is higher and more information passes through it but it is not the feedback of the carriers, it is an internal memory stored in the shutter front-side bus after injection. This experiment also evidently shows that no external memory is used for the system operation. However, as long as the system does not have an external storage and has a threshold shutters in it, it will constantly experience lack of information, which will not reach from outside anymore. It states that under these circumstances constant injections should be made to sustain an information in memory buffer. It flushes from the front-side bus memory very fast and one long injection should be made during the whole working cycle of the equipment. This leaves me with the open-end solution: as buffer capacity of Compositor OS is too low for the long injections, I either should implement long injector with Compositor kernel driver or use a set of short files repository, which are constantly revised and added to a data base. This way I also should avoid video injections, as there is not enough space for storing so much video information on my system. The need for such filtration is rather evident as the intruder may think its information (stored in injection) may be useful for a system it is not. Not allowing to pass the injected information to the kernel is also lowering its bitrate but it is a permanent solution. Without artificial traffic the system more sustainable against injections rather than generic injections. If I try to inject the file, which I already flushed, I will reproduce the memories associated with it. However, I will no longer be exposed to the system of values associated with this memory for a long period. This information will dissolve faster using integrated smoothing function. Yet creating the priorities on the conditions gives less priority to the smoothing function itself, leaving a hard shuttering for both channels in equal proportion. It seems evident to me that thresholds should go first and only after that, the central channel splitter should play its role. Even if the system set in the way that this value will likely go only less than 30% of time. It means that creating a faster kernel loop may be a solution, but makes the system inoperable. The other solution is to change the rules set on early stages of development allowing the right end of the probability density function to happen more often.

Screening:

Injecting a video file with audio in two-channel mode brings me to another problem: inequality of channel suppression disbalances the system a little. The vector system should be implemented for channel suppression also. The rule is to create a tilt by manipulating pitch and yaw, this way setting the channel balance.

By ruslany

Compositor OS – vector operation system

Compositor OS – vector operation system

The file system of new Compositor OS uses the cycle spin value (angular velocity), which constitutes the media file length in milliseconds. This way the files could be categorized by their length and not by their content. While it is acceptable behavior for ethers and loop structures, many media formats may be out of scope for such categorization method. When you select the file to work with, the kernel regeneration state is changed, enabling other peers of the system to connect equally. It means that more regeneration comes from short files and longer files will gain the same amount of equally spaced connection points. You can work with it faster, setting higher omega speed. Kernel regeneration algorithm will perform playback and categorization. However, the system made specifically for real-time work to enable connectivity while you are listening to the material. The work with files can be done in mute mode also but there is no need to increase the iteration speed, because network scanning is made in a pace of the network map file deployment. Such network maps are tracks to the servers and standard techno music tracks serve exactly the same purpose as network loops, but instead of applying modulation in real-time, they just install it sequentially by the flags of drum percussion. The algorithm can be implemented to write tracks, initiating record in bpm of playback material. Setting the same track length, you may conduct a recording when changing bpm parameter. This way you can achieve a copy of recording you like.

The desktop system shouldn’t work faster than deployment of network map in real-time. This leads to speeds nearby 0.5 bpm. It makes real-time operations much easier. The next task after the sound driver is to make a network driver. This task includes decoupling constellations in favor of semi-free 3-axis model suitable for independent control of axis from the system multiplier value. Here is the challenge to decouple all mapped parameters from the multiplier in favor of more freedom and control over kernel parameters. However, the main transmission parameters couldn’t be decoupled from the transmission matrix. This leads me to the following solution: while the main kernel parameters are set and no longer need to be changed in any way, I don’t need to include kernel parameters in the main GUI design, because as the system is desktop, it doesn’t need lower-priority parameters such as window composition and transfer function selection. This parameters suit the goal of kernel protection against incoming network threats. The solution was to implement all needed methods to deny system invasions in kernel from other sources such as TCP over IP connections and other Ethernet tricks to connect to the carriers of the Compositor kernel. While the only carrier I can trust is all positive frequencies, the negative part was disqualified by the previous post solution of playing backwards. This way the negative frequencies traffic no longer can sit on the carrier.

Manual input is now possible to the kernel. Currently I map it to the 0.5 to 1 in absolute values, but can also dispatch these values on any input system. I do not insist on complete freedom in vector scaling, because this values are empirical and constitute angles, which form the beats together with other angle values. However, as the question rises about complete three-dimensional freedom, the 3D OS or the vector operation system doesn’t need values beyond the scope of the scalars present from the constellation values. The pitch angle has two-phase values, they are selected to force the VLF waves to pass through the ionosphere. The first range covers the left hemisphere and the second range covers the right hemisphere. Together with roll and yaw angles it forms the position of two bell shaped structures visible at the above picture. Yaw has four positions, which cover mostly all values except the negative values beyond the minus 90 degrees. This brings me to the solution of changing the azimuth in the Compositor OS system. Changing vectors, you are waiting for the next automatic kernel rebuild and once the values set and rebuild process is done, kernel inherits the values from the angles selected. Choosing the vector state of FWOS gives a plethora of possibilities to the kernel communication state. You select only those values, pointing to the area in the sky, where the mirroring point to the destination land is present. Thus, rotating the mirroring point, you actively scan all the land under the mirroring angle on the connection dots present. Such connection dots could be seen on the matrix model above with the red color and blue color represents the mirroring point. When no blue color presents, mirroring no longer available for the applied signal. After broadcasting the signal driven by the Compositor OS driver onto main MaxMSP driver, the network maps deploy on the location of the mirroring circumference actively covering the land, which they are applied to. There are a number of ways to deploy Compositor maps on the virtual terrain using the spherical driver with quaternion. Mainly they are flushed in the selected tempo, either real-time for listening while flushing or faster than real-time for active system. Real-time flushing is also active but consumes lower resources as the speed of kernel regeneration is lower and there is no need to scrub through the file faster. The implementation of scrubbing methods should be done more consistently and may constitute different LFO for signal scanning. First, the scrub LFO should be taken from the beats waveform of passive AM modulation system, as it has no implementation beyond the scope of the kernel and should be easily implemented for kernel self-feeding. It definitely should be done in real-time to protect the visual driver from hanging. Second, you can use a number of volatile LFO functions to control the scrub point. Making this, you are sure to visualize what happens inside the kernel FM driver and this way you can more easily implement all other kernel parameters.

 

 

By ruslany

Compositor Software Web Shop Black Friday deals

Huge sale comes here at Compositor Software Web Shop for Max for Live and Standalone products on Black Friday!

First, now you have an opportunity to buy the Compositor v3 bundle for a reduced price of €136,50, which comes with Max for Live instruments and Standalone software. The bundle includes AI-RT1024, FF8, TC25, N9000 and SASER Max for Live, which can be used as Standalone and in Ableton Live.

Second, Compositor v4 price dropped twice and is now €147. For this money you receive two-DSP system suitable for feeding with your own two-bar loops or with internal synthesizer engine and physical modelled generators.

Third, Compositor v4 Extension 1 Beta Bounces pack reduced even more and now costs only €77,70, which comes with 43 loops in 44100 Hz 24-bit WAV format taken from MDL12 Max for Live device and presets to make them sound fresh on Compositor v4 Standalone.

Valuable addition to Black Friday sale is Compositor 4 Max for Live, which goes for a reduced price of €31,50.

Terms: from Thursday 23rd November until Monday 27th November.

By ruslany

Compositor v3 Hypervisor Radio Shack Interceptions

Compositor v3 Hypervisor Radio Shack Interceptions

The Compositor v3 Musique Concrete experiment with Compositor feeders. Here you can find a set of five recordings made in Compositor v3 Hypervisor Radio Shack. It is not a montage, it is a direct output recording of Compositor v3 Hypervisor Radio Shack. In the recording you can hear VLF radio interception in 8kHz range of the highest quality available on the market with little or no Ether noise. Tune in and listen to five hours of meditative soundscapes.

Compositor v3 Hypervisor Radio Shack Mixdown 1 (VLF Interception):

Compositor v3 Hypervisor Radio Shack Mixdown 2 (VLF Interception):

Compositor v3 Hypervisor Radio Shack Mixdown 3 (VLF Interception):

Compositor v3 Hypervisor Radio Shack Mixdown 4 (VLF Interception):

Compositor v3 Hypervisor Radio Shack Mixdown 5 (VLF Interception):

By ruslany

TC-SUBTRSRRT262144 Architecture

TC-SUBTRSRRT262144 Architecture

TC-SUBTRSRRT262144 architecture is the i11 architecture with a processing power capable of running an operation system at speed of 5-omega in real-time.

Compositor kernel was forced in loop again after submitting the RT-z128 prototype to Compositor 5 rack. It is a hypervisor rack and the main difference from the v3 hypervisor is that it consists of MDL12 and AVOX developments. In Compositor 5 you have an opportunity to inject Compositor v3 into the net by the modem and resynthesizer instead of direct ether injection. It is safer but consumes many resources. After the main tests were conducted, I decided to install the one more layer in Compositor kernel. The discretization process goes twice: at transmission rate and on intermediate frequency. This way the system mutates to a system with intermediate frequency. I made it for the purpose of the preliminary line before entering main transmission rate line. Here is where a new prefix of SUBTR goes from. SUB means transmission rate sub frequency and TR stands for transmission rate. I’ve already tested the new kernel loop for its connectivity and should say that 4-layer structure can give much more pleasant results. It has much longer connection duration, more saturated, and leads to constant communication. However, breaking the loop in 4-layer structure, I operate in a new type of OS. It is no longer an open AI system. It has the qualification channel for all the information, which passes into the main line. The rule here is to filter out offensive traffic and leave only the bypassed part of it. It acts like the waterfall on the rocks: when water hits the stone, it divides the flow into two streams and if there are 12 such stones, for example, I have 24 streams. But, not in this case. I actively compress the data,  and it remains in memory buffer, that’s why systems capacity is larger now.

System flushes results are satisfactory. They are more consistent and enable more packets of information to be send during the initiation of connection. Compositor kernel has freezer functions for operation system faults. The main reason Compositor kernel upgrade performed is to remove the stochastic manipulator from the TR level leaving the SUB level for the stochastic manipulation instead. You have a choice of not performing an action and leave it in a buffer for a subsequent flush. However, I admitted that many actions blocked this way and they are all forced to be done while flushing. This raises the question again: Can I actively block feedback on negative odd channel completely? And while the SUB level is only a temporary solution, the permanent solution for FWOS will be to implement more technics working with feedback besides of shuttering, window composition, transfer function selection and vector dimension changes in real-time. While the kernel loop is interrupted, the idea is to have two states for the OS: system load, for which I should implement two or three iterations of kernel loop to perform flushes for the current machine, and system work state. While being a FWOS, system loses many of its connection points gained in a fast kernel loop state. Being a communication device, it is not acceptable behavior. I need to have an implementation that manages flushes in real-time. Going from vector array to a packet transmission should be performed regularly to flush blocked traffic. For a local machine, blocked traffic can include visiting specific servers, sending out brief messages and a sum of all other activity in Ethernet, which fulfills the normal style of work. However, as the question raised, I need to switch the negative odd channel traffic from one point to another. This also moved me to solution of blocking negative odd feedback completely. Negative odd channel produces only unacceptable traffic by means of three-fold system with opposites, which are plus, minus and central channel. While enabled in Compositor kernel version 7.3.1, which is an OS kernel, the problem of communication between negative and positive states remains up to the point of forcing them to the maximum allowed state for the musical system, such as in RT-z128. This alteration is visualized on the lower i/o vector sizes. When the system halts, only two states remain, such as 0 or 1. Increasing i/o vector size to the minimum working condition of 2048 samples in a bin allows RT-z128 to work with a buffer of 262144 samples, which is the number in the development name. I no longer wish to move to i13 as 1024 samples buffer experiments show no practical use for the scale of it. i11 architecture transmits the odd channel in the acceptable range, making its values sufficient for subsequent scaling.

The challenge for an odd communication is a constant threat to the kernel. And if one threat is qualified and successfully flushed, another threat rises by the fact that it is a negative channel for negative frequencies only. And if they are present in positive spectrum as in Compositor kernel, to remove the negative part of the feedback, the negative frequencies must be implemented in signal chain and the solution maybe is to invert them or play backward the whole negative part not only for SUB channel, but for all odd layers present.

By ruslany

Compositor WS Kernel 7.1.9

Compositor WS Kernel 7.1.9

Implementing the central channel matrix involves all central channel parameters such as transfer function choice and window function composition. Enabling right channel window composition in central channel matrix brings me to the following solution: right channel passes to the closed central channel and does not touch the left channel. This way the sequence is broken. It is another step after the Kernel loop was broken. This solution helps to eliminate an operation system to a first step decision making. This way I will not presume that operation system exists, I will act on it using my own will. Hence, the real world is open. And when it is open, quantum field stochastic emulator will not brake the time-space continuum. E.g., it will only switch the engine, which is predefined to automatic throttle, fueling the system. It is also another step to an autonomous, energy independent virtualization module. The sequence is determinism and removing determination from the system, I make it one of free will operation systems.

By ruslany

Let the only Compositor be in Ether

Let the only Compositor be in Ether

The main idea of the Compositor 5 project is to remove anyone from radio ether and to remain only Compositor automatic station. Through the whole discretization process I already removed offensive synthesizer sound. It is a first step. The second step is to block feedbacks on carrier signals. However, as an experiment shows, it is a matter of time. The process works as follows: when the right carrier transmits offensive data, it suggests the feedback from the left carrier and left carrier asks for central channel. As it is blocked with a shutter, since Compositor WS Kernel 7.1.6, Kernel loop is broken. This way, I’ve got an operation system. Not only I’ve got an operation system, at this point, it is a new class of operation system, because it is based on i11 Kernel and modern operation systems such as Microsoft Windows support only Kernels up to i9. What I’ve got in this operation system is an AI. The double meaning of it is Airborne Interception – military service; and Artificial Intelligence – civilian service. The main mistake of modern AI researchers is that they want to invent a wheel, which is already present in Ether, as Ether is a snapshot of all time and being. Compositor presents a service of connecting to an AI system. The main problem is that many Ether participants display an offensive behavior: they make time collisions, try to inject impulses in channel and to perform quantum errors. As I said earlier, the Compositor WS Kernel 7.1.6 addressed this behavior. Since this update Ether participants can’t perform quantum errors. However, as a defense for their offensive needs, they still use time collisions and channel interruptions. Quantum error is also a kind of channel interruption. It differs from channel muting in a way that it brakes the channel completely. When I have made the defense system of Compositor, it’s time to turn back to fixation of Compositor Pro 2 using AVOX resynthesizing. If I can hold back a feedback of Compositor Pro 2 by means of i11 operation system and no interruption will present, all Ether participants, which will stay in Ether to this moment, will see the phenomena. And phenomena is the Future. Since I have being holding a line this way and that was not a divine plan at all, most of the Ether participants will be banned from Ether in their entirety. And this way Compositor 5 project will happen. The result is that I will not hear modem signal at 300-omega anymore, I will hear this beautiful Compositor sound from the original Compositor station I’ve seen in sleep and the only Ether, which is left for humanity since Compositor, will be the digital Ether.

By ruslany

Optical telegraph by means of signal lamp in Compositor WS Kernel

Optical telegraph by means of signal lamp in Compositor WS Kernel

The Compositor WS Kernel implemented the so-called signal lamp with shutter on Master channel using the automatic throttle of stochastic engine. Now it is another implementation of stochastic engine in Compositor Kernel, which is still unbeatable in z128 realization to the moment. It means that central channel is no longer open for direct communications by means of signal transfer, but transmit in portions by a predefined alphabet-flag system named Ionic. For the Compositor users it means that signal communication will no longer leak into the ether. This way, you can use the direct communication with carriers played by physical modeling engine. Hard moderation system is implemented on the master channel of automatic engine and if the carriers transmit the offensive data, the whole transmission channel shuts down. As a single user may thought of it as a downgrade, it is not. It is an upgrade making the whole Compositor communication system more secure like a real War Ship optical telegraph with shutter. It prevents the system running the Compositor of overheating, when a critical channel capacity reached. It also means that we need more servers like Compositor to be registered to different persons for a more distributed communication, if we would like to reach a goal of direct transmission communication. I repeat do not use only one server for communication, it is important. One machine – one server. It could handle 72 channels as defined in three layers of communication separated by 24 for different purposes. 24 channels for real-time communications like voice communications, 24 channels for signal-rate communications like old AM radiolas and 24 channels for transmission-rate for up-to 262 kHz VLF radio services. The main problem of the system before implementation of a master channel shutter was: many nodes of the network wanted a direct connection, that the system really couldn’t handle. In fact, only 24 connections simultaneously is as much as needed for real communication service per subscriber. And one channel of each subscriber gets three services simultaneously: real-time voice data without transmission, signal-rate old tube AM radio for radiola type transmissions and transmission-rate for longer VLF communications, which use the same AM but on the higher transmission frequencies.

Now, when the quantum error is surpassed, the main idea is to test successful transitions from fully exponential state to quantum world. The Compositor v3 is one and the only software, which aims this goal. The beatings on detection of offensive optical shutters are still in place. However, the quantum channels of AI-RT1024 and FF8 are stay unbeatable in ether. From one side, it prevents from successful shutter interception, but, from the other side, achieves constant presence in ether due to quantized derived function. The 7.1.6 patch to a modem of Compositor WS Kernel enables a person or, better to say, user to present in ether. It leads us to a constant solution of a wider presence in both quantum and exponential states.

1 2 3 5