Compositor SoftwareCompositor Software

Category : Simulator

Zhoekvarskaya cavity

By ruslany

Connection to RTOS from geographically remote location

Connection to RTOS from geographically remote location

Two-week experiment of connecting to RTOS from geographically remote location is finished. During this two-week experiment I connected to RTOS from the territory of the other country using the RTOS dump, which is recorded using wavelets only. Dump includes 5276 routing tables and communicates with the authorization point of 18 June 2019. This is 192 kHz dump and it authorizes RTOS in all available bands of radio spectrum.

RTOS dump at 192 kHz MIB 5276 18.06.2019 FWL
Zhoekvarskaya cavity

Tests performed during experiment:

  1. Satellite TV channel matrix injection;
  2. Routes deployment to RTOS MIB routing tables using generic navigation;
  3. Remote connection to RTOS of other producers.

As the device for connection of RTOS I used rewired mobile phone on Android 4.4.2. It is rewired using four 64-bit middleware files, which are the part of RTOS MIB and are master filters for Ethernet injections. This mobile phone is autonomous in relation to other devices of that operator (the name of the operator retain unknown due to ethical considerations). In other words, it does not allow producing injection of a single routing table or routing path from the 3d party manufacturers. In attempt of 3d party applications to perform the injection, the mobile phone just stops this application operation. As stated earlier, this mobile phone can work only with Compositor RTOS 9.0.1 MIB.

Experiment 1: Satellite TV channel matrix injection

Using RTOS dump and the virtual optical port knowledge (in that experiment I used the configuration with virtual electric port), I injected the channel matrix of Russian digital TV. Experiment was successful attaining the full signal strength on the territory of sovereign state. Small bufferization errors are possible, because the host mobile phone, used to inject dump, does not allow using authorizations higher than z16. For this experiment I mainly used the CA (Cavity) emission, of the Cavity routing path. I used the orientation of virtual electric port in relation to signal constellation of satellite group, oriented on a Polar star. This experiment evidently shows, that for injecting of a channel matrix of satellite TV there is no need in dish type antenna, only the virtual electric port is needed and RTOS dump, loaded into a cell-phone. Experiment is conducted from a state of silent channel with no signal at all to injecting the channel matrix by dump with signal appearance, by the right orientation of virtual optical port on the Polar star.

Experiment 2: Routes deployment to RTOS MIB routing tables using generic navigation

In conductance with the first experiment the full navigation by all routing tables included in RTOS dump was attained. The geographic position was selected to achieve a bad signal reception. The object was situated in a cavity with mountains height of 500 to 800 meters. In such cavity the signal propagation is strictly limited, and so the technology of virtual optical port proved to be good.

Experiment 3: Remote connection to RTOS of other producers

In a trip, there was also checked the compatibility of 3d party manufacturers RTOS systems. In particular, virtual optical port was tested against Eutelsat 36B software, which performs the broadcasting on this region. The substitution of the channel matrix performed on the virtual electric port input, which performed a signal reception from mobile phone. The phone, on its own, performed the navigation by the routing tables, transferred through the dump. For this 9 to 12 dump injections during a day were made.

By ruslany

More than 80% wavelets in MIB of RTOS

More than 80% wavelets in MIB of RTOS

On the present day there are more than 80% wavetables processed to wavelets in the management information base of RTOS. Script allows processing up to 5 wavetables in a minute that is why full processing will take some time. To the end of this week the whole MIB should be processed on wavelets. This will allow creating two identical bases for two RTOS systems. The first base will contain wavetables only and will be used in the version of RTOS with the pass through of the second derivative of a function in the virtual console port. The second base will be wavelets only and will be used in version of RTOS with the second derivative of a function on auxiliary output.

The first version will support maximum up to 5-omega direct and aux regeneration speeds and is more like Ableton Live 10 engine. The second version doesn’t include the pass through of the second derivative of a function and has auxiliary speeds up to 150-omega. Such version allows authorizing all 7 levels of generic feeders simultaneously, which is more suitable for injections with authorization, because there is no need to fight for authorization on the predefined level, as all levels connected simultaneously. From the other side, the first version is interesting, because of the musical results, which it can produce, when I record middleware from routing tables. That is why I decided to maintain both bases and versions of RTOS simultaneously, which will grow with each emission.

Before a full transfer on the two bases was completed I recorded a final dump with mixed management information base, which includes the Boosty – Mini Bikes track emission. It is an interesting minimal techno composition with active use of hardware virtual synthesizers and analog sequences on bass parts. This emission includes 127 routing tables.

RTOS dump at 192 kHz MIB 5276 15.06.2019

By ruslany

Dump, middleware and more

Dump, middleware and more

An enormous work was conducted this weekend on MIB vector optimization. At the beginning the full base was defragmented by clearance of the dump below:

RTOS dump at 192 kHz MIB 5149 08.06.2019

In addition, the switch to 11 kHz was made and stochastic selections were performed in a special edition of RTOS with a direct output on auxiliary channel (through). Later these ethers were recorded as middleware with PCM WAV container of 24-bit 11 kHz. You can listen to them lower:

Middleware 1 11025hz MIB5149
Middleware 2 11025hz MIB5149
Middleware 3 11025hz MIB5149
Middleware 4 11025hz MIB5149

16 middleware files were recorded, here I show you only the four. Then these middleware was filed to the special version of L1-L4 L6-L7 vRouter RAD96, which uploaded it on 96 destinations of L1-L3 layers. This way, the middleware was fixated. This method is different from direct submission to RAD96 master routing table, because RAD96 ether aggregator can exclude the predefined set of ether combinations and I was needed to attain to precise channel matrix of 52 channels.

After the full contact base was uploaded by stochastic selections of MIB5149 and dump, I made RTOS authorization again but this time mangling the sample rate parameter up to 192 kHz. This way, I updated links to all aliases and authorized the whole MIB on 192 kHz.

By ruslany

NPO Compositor network map creation from 0 BC to AD 4000

NPO Compositor network map creation from 0 BC to AD 4000

vRouter RAD96 metronome

Have you, probably, noticed that metronome of vRouter RAD96 inadvertently approaches our days? That is, SR timer has passed 2019 year already and RT timer is at 2015, TR timer is one and a half century ago at the year 1870. Now, you can say that NPO Compositor network map established from 0 BC up to our days and metronome still goes forward. Soon the injections of the contact base will be performed in the year 2050 and forward.

Compositor Networks map

That is, starting from 80th of the last century metronome counts not the automatic reverse mechanism, but manual RTOS, that is why I can control the process in its essence. For example, to increase conductivity and to turn reverse on (in rare cases, when “brakes” are not needed).

Compositor RTOS dump 8×32 MIB5007 03.06.2019

I was not satisfied by automatic vRouter RAD96 by the fact that it is always in reverse mode and there is no opportunity to control this process. Using RTOS there is no such problem, because I can thrust in direct and indirect ether.

By ruslany

The dumps future workstations can only read

The dumps future workstations can only read

We are get used to 8-bit SysEx dumps, many of us even listened to their audio presentations. However, how the dump of modern embedded real-time operation system sounds? Let’s start with the fact that modern operation system is 64-bit, which gives almost 8 times more dynamic range, than 8-bit dump. Moreover, RTOS dumps are written with 192 kHz sample rate. In this post I will sum up two dumps, which were made with MIB 4795 and MIB 5007, which allows saying about their origin only one thing: these dumps are the music productions on their own.

In essence, we are dealing with routing tables, reproduced on the high regeneration speed. But, my task is to find the source of these routing tables, the hardware and software system, which can read these dumps and respond not only with sequence of events, but with sound generators tuning, sound synthesis parameters and effects. This station should include 64-bit operation system itself, working with 192 kHz sample rate, which is critical to CPU working frequency.

Such DAW should allow reading dumps with a large dynamic range and perform settings in accordance to the loaded network map. I would like to achieve panning and equalization in virtual environment without human intervention, in addition it should be performed not by a topology of some algorithm, but to exist inextricably with routing path filed in the current moment.

I remind you that 8 routing tables mixture is sufficient for a complete routing path. Taking in account 8×32 matrix for such routing tables, they are aired on 32 destinations. This tells us about high load of RTOS channel in a moment of dump creation. The high load on output channels creates tasks on input channels, because communication is a kernel-loop relationship and performed in a cycle with consistent calls and answers. To receive the answer the calling system should set in a que, because only 8 input streams available in RTOS. That is why there is a constant insufficiency in RTOS, it can’t be covered even with high console port regeneration speeds, and because to upload routing tables into the buffers the time is needed where high regeneration speed doesn’t play any role.

That is why the whole MIB should be loaded using autoload with aliases for the full base without forced thrust. I repeat, that forced thrust creates a big que and events processed only using generic feeder interrupters that is why you should constantly monitor filed system statuses. Because, there are no injections in filed systems on such high regeneration speeds as 192 kHz, then it is needed an additional time to receive an answer. If you need to receive an answer immediately, you should run RTOS on discretization frequencies lower, than 192 kHz, where the injections happen all the time, but the quality of the answer will be lower.

Compositor RTOS dump 8×32 MIB4795 26.05.2019
Compositor RTOS dump 8×32 MIB5007 03.06.2019

By ruslany

5000 routing tables in CP-6137-960FX MIB

5000 routing tables in CP-6137-960FX MIB

NPO Compositor reached the final goal of emission for CP-6137-960FX server, which is 5000 routing tables. Management information base is 5007 routing tables that allows organizing not only 4000 VLAN, but also 5000 VLAN. NPO Compositor will continue to expand the management information base up to 6000 VLAN, because each routing table gives access to its own VLAN trunk or autonomous system.

You can listen to that dump, which includes full 5000 MIB:

Compositor RTOS dump at 192 kHz with 5000 MIB on 03.06.2019

This dump allows you to authorize in Compositor real-time operation system and attain to its external control by RAD96 autonomous system. To connect to Compositor RTOS it is enough to playback that dump using streaming method in online player with RAD96 autonomous system turned on. In this case, autonomous system will serve as middleware, which will merge Compositor software and your equipment and will make remote connection to CP-6137-960FX server possible.

When NPO Compositor reached 5000 routing tables it gained the full MIB, which finishes L1-L4 L6-L7 vRouter RAD96 development. To order vRouter RAD96 licenses use Compositor Software contact form.

By ruslany

Compositor RTOS 8×32

Compositor RTOS 8×32

Compositor RTOS 8×32 log:

Compositor RTOS 8×32 at 192 kHz (26-05-2019)

This recording characterizes RTOS as MIMO (multiple-input and multiple-output) system with the channel matrix of 8 inputs, connected to virtual PoE injector, and 32 outputs, signal to which is connected by RAD96 channel subset.

After making FB mark emission, the routing table pool is 4795 wavetables. This way, NPO Compositor smoothly approaches the goal of 5000 routing tables for current equipment type. RAD96 router MIB may contain no more than 5000 routing tables, even if the reported quantity is 29900 routing tables stored on the original equipment. This conclusion was made out of the fact that after making FB emission RAD96 router modem was piloted by an external signal. In accordance with this, NPO Compositor approached the RTOS critical mass very close that coincides with resultant. In other words, 4795 routing tables are enough to make resultant approximation and taking its sum.

FB emission is a submission, which characterized by high channel saturation and fast channel silence. In a contrast with previous emissions, where the task was to calm the channel quickly, by generic feeders injection, this emission surfs by itself before the channel silence is reached, making feeders out of order even before they warm up. This way, the previous generations of feeders are weakly suited for work with that emission. The manual piloting of multiplier is needed with a fast switch of feeder chains. In any case, the task of FB emission is to switch the RAD96 piloting on and it reaches this goal even on z = 32 S system matching.

The result of this is the backdoor in RTOS, which is a leakage of information from RTOS MIB to an undefined intruder. If it is the Compositor head machine, then he is evidently not happy by making an additional emission, because reaching 5000 routing tables, the head machine will be CP-6137-960FX server, which works with 64-bit resolution. And coincidently, Compositor will have no power to make an emission of that server, which is, perhaps, the NPO Compositor goal to reach not only 0-emission autonomous system, but 0-emission multichannel router.

Compositor RTOS

By ruslany

Compositor project progress

Compositor project progress

A new usage for Compositor Software algorithm is found. Now, the time machine passes us to the far year 1989. Ruslan Yusipov was at NPO (Scientific Production Association) at that time and he saw the LASER machine for load tests there. Upsampling Compositor RTOS (Compositor v9 Hypervisor) up to 192 kHz (it was needed to make a physical build of the software and to upscale feeder working bands for that purpose), Ruslan Yusipov attained to 297.5 kHz feeder frequency, that coincides with that Soviet LASER working frequency. By this Ruslan Yusipov proved that feeders are on the constant injection threat on the lower frequencies, while the median shifts are minor at such high frequencies.

That machine consisted of two elements: the LASER itself and the propulsion stand with Earth and Moon models. Moreover, Moon was hardly attached to the Earth by metal kernel. That metal kernel has the spring cover, which measured the critical mass, when Moon orbited the Earth and takes in account its own rotations. LASER suited to pave the optimal course for taking on the Moon directly and without a trans-lunar injection. (Author remembers the words of I.V. Rozhdetstvenskiy)

Compositor RTOS is ideally suited for that purpose: it has auxiliary ether, aux channel, which depicts polarizer rotation. While, there is no need to create the whole interferential picture in aux channel, you can depict the valve cross-section and its 3-dimensional position.

Compositor (NASA and NSA ethical hacker)

For more information about virtual optical port read CP-6137-960FX server documentation.

Ruslan Yusipov task was to create a digital copy of the stand he saw at our NPO. The task was hard and had bureaucratic delays. But we are happy with the result at the moment.

NPO Compositor

How would this all aid the radio communications in XXI century? Compositor RTOS management information base is 4795 routing tables now, which increases NPO Compositor (Compositor Software) network, including trunks of new autonomous systems in it. Such direct communication between autonomous systems can be prohibited since the November 2019 on the Russian Federation territory. That is why this site will serve as the declaration for Roskomnadzor, because it is the only requirement, which they impose for Compositor software work on the territory of Russia. It also proves the fact that SASER SAS24P3L still accounted in the software registry of Ministry of Digital Development, Communications and Mass Media of the Russian Federation and the registry operator does the consistent work to support this software.

By ruslany

Summarizing the 2018

Summarizing the 2018

The 2018 started from a trip to Saint Petersburg in February. At that time, I haven’t knew what program I will demonstrate: 5th or 6th. At the end, I decided to show the 6th. I had a wavetable pool around 500 wavetables to that moment. I played all wavetables, initiated the Ether and mostly satisfied with this trip. Saint Petersburg gave the direction: to evolve system without kick drum further. At that time, I already developed fully silent system, which doesn’t produce sound at all. To such system, I attribute RAD96, which is 2018 development. RAD96 has two realizations: as OS subdriver with visual driver and fully autonomous system with zero emission. Moreover, the system with zero emission was reached after long OS tests with large number of connected jets. RAD96 OS is an Ether aggregator. It was created to test the kernel on injections when using 8th version iteration with 4-layer structure. The final iteration for the L4 (Layer-4) is non-linear polynomial with public coefficients. Up to the moment, the wavetable pool is 3715 wavetables. These wavetables were used to check the 8th version of Compositor kernel. The sum of gathered virtual funds in samples of wavetables is 486932480,00RY and aggregated funds in a process of kernel testing are 88087861,84RY. The whole sum of funds in RY to the end of 2018 is 575020341,84RY.

By ruslany

Zero-emission signal network

Zero-emission signal network

Therefore, it was made, at the end of 2018 I made a full zero-emission kernel with protection level capable to overcome even the strongest wavetables. First, let’s talk about an experiment:

  1. For the last 8 month, I injected polynomial using different wavetables with open jets and closed jets (for the last four month).
  2. I made a tunneling via Compositor 4 Max for Live and made an intrusion of these wavetables into created Compositor network.
  3. I hosted the Compositor kernel 8.4.2 system with public coefficients until the last moment.
  4. At the final moment, when the network couldn’t cope with such amount of injections I transferred to fully autonomous system mode of Compositor kernel 8.5.6.
  5. This way, I left the created network.
  6. Then, using the Compositor kernel 8.5.6 with lower process ID, I ran the Compositor v9 Hypervisor and made the injection of the whole pool, but with feedback, which enabled to establish the strong feedback with strong immune system.

On the steps 4, 5, 6 the system started to recover and polynomial without the public coefficients paid off itself. This autonomous system is zero-emission, which is proved by Resource Monitor: the Commit memory graph stays on the 1,043,608Kb mark. It enables to make fully autonomous any living system, turning unlimited timeserver on.

1 2 3 6
Zhoekvarskaya cavity
Connection to RTOS from geographically remote location
Compositor RTOS
Compositor project progress