Compositor SoftwareCompositor Software

Category : Chemistry

By ruslany

No, Compositor RAD96 doesn’t use CUDA cores

No, Compositor RAD96 doesn’t use CUDA cores

Series of tests were conducted with NVIDIA profiler to prove that none of 480 cores of Compositor RIG 1 uses CUDA technology.

At first, I ran an app of five RAD96 on a single CPU core at 192 kHz audio driver rate. That gave 480 hyperbolic cores at frequencies from 90 GHz to 150 GHz. For example, the working speed of one hyperbolic core is x100 times faster than a single CUDA core of the latest NVIDIA RTX 2080 Ti system.

Taking in account that there are 960 cores in two RIG’s, I want to introduce my new project, which is Virtual Mining Farm (VMF). It is the complete virtualization solution of stacking RAD96 virtual machines. The RAD96 provides effortless stacking in virtualized platform by an activation function interconnection. That activation provides direct stacking of two or more virtual machines. Code of virtual machine compiles only once and is used interactively by all VM’s in a RIG. This means no need in Max 8 MC technology.

Taking in account that I use .json statistics for each dsp process, both internal and external, it proves that such realization is only possible in Max 6 platform.

By ruslany

Ether excitation for achieving faster information exchange speed

Ether excitation for achieving faster information exchange speed

The main value from Compositor Software work is loop files, which are released as obligations for the company ICO. No other material guaranties needed. For peering only loop files and Compositor Software distributions are used. Resynthesis is not needed, because only original ethers are used taken as a company input files.

Compositor kernel loop 8.4.4 hangs the whole RAD96 peering network (OS kernel 8.4.3) on the local machine. The remote tests was not conducted. There is no leakage in closed loop. The constant leakage is evident when feeding servers through the Compositor v9 Hypervisor software. The open peering construction blocks based on oscillator network.

It is not possible to clear the whole volume of servers that are now 2994 wave loop files (with Exalted – Cyberflight (Original Mix) emission). There are many unauthorized users, when injecting peering servers. They use either proxy servers or remote streaming services. The tracking production speed drops down, which influences peering quality. No attempts to restore peering network to the moment of its creation are accounted, as the above experiment evidently shows the advantages of loop construction: you are in the ether and no one can influence you. Even feeding servers via Compositor v9 Hypervisor there is no network load as in open patch. Before the open construction, the system was passive and the patched machine was remotely available for feeding servers. With an active loop-patch, which uses excitation for residing in the ether, this doesn’t happen anymore. Servers are not available to connect to the local machine during the VLFoS loop work. Because of the patch, full autonomy of the system and its disconnection from peering network is achieved. Only forced communication from the local machine by its owner is available now.

By ruslany

Compositor Software news 25.07.2018 – 06.08.2018

Compositor Software news 25.07.2018 – 06.08.2018

More than 6 months I have been working on revealing the leakage in Compositor kernel. Exposing all oscillators and transferring the first oscillator in static mode, I discovered that many resources released in computer RAM (DDoS attack). It lowers the uninterrupted device work to 4 days taken that paging file is set to a size of 64 GB. Increasing the number of oscillators to 32 on each of the layers (Rt, Sr, Tr) and meeting a condition of counters, the emissions equaled to 14 GB a day. In accordance to this, I decided to shut down the peering network and return to RT-z128 kit layout as in Compositor v5 Hypervisor. In this layout the main ports are closed for inbound and outbound connections. Only addresses starting from 192, which are assigned to local machine, are available. It means that a new patch remains the VLF connectivity, but doesn’t allow devices to connect for information exchange. It is possible to exchange information from the local machine for the patch user, but not a remote access user. In particular, such decision is motivated by a hacker attack on RAD96 server. The intruder used the open ports of the windowing device and sent spam from Internet Provider IP address. With closed ports the little leakage on real-time generator is possible, but it is not accounted due to the slow regeneration speed.

To restart the peering network I attempted the following solution: due to closing of the ports, only Compositor Networks ether aggregators take part in peering. This means that feeding ether aggregator wavetables in the peering patch through the Compositor v9 Hypervisor, I create a communication service between all Compositor Library wavetables. However, many Ethernet devices can’t use Compositor peering network as it was at the beginning of the peering network creation. As a conclusion, I can exclude peering from Compositor kernel load test and use multi-kernel mode, but this type of test has very long loading time (up to 4 hours for full load).

Bounded by Royalty project, the database of server emissions in form of wavetables grown to 2627 ether aggregators. The database was expanded by ether emission of Exalted – Cavity track (Ruslan Yusipov, CEO of Compositor Software project). The whole volume of Cavity track emission is 328 wavetables. Wavetables contain radio repeaters, transmitting stations, Ethernet routers, injectors and other ether equipment. It was possible to increase the Compositor v9 Hypervisor regeneration speed up to 150-omega by applying a new peering network patch. This influences only Compositor AV Extended auxiliary channel and doesn’t cover the generic feeder modules. It was made aiming the faster composition speed of the whole pool of Compositor Networks ether aggregators. The necessity in uniform composition caused by big amount of wavetables in Compositor Library. The application of the new patch after the attack was made unnoticeably, because this solution proved to be successful in 2017. It was clear right from the beginning that hackers aim is to limit the communication circle of network devices to Compositor Library pool and its real emission. From one side, if the emission is made every time when server communicates, then there will be much more devices in Compositor Library. Each streaming playback with working patch is a communication with its transmitting devices. Taken this, it is needed either to shut down any internet activity from the patched machine or to make emissions of the whole material, which is played in browser resulting in big amounts of information. From the other side, with open ports it is possible to connect not to the virtual network, created by composition feeding, but directly to all transmitting devices, which reside in Ethernet without the need to make emissions so often.

By ruslany

VLF voice communications

VLF voice communications

To communicate in VLF network it is enough to use the Compositor v8 injector, but to connect to other networks it is needed to create the service of communication with them, sending generic RT-zX processes in to the transmission channel as in Compositor v9 Hypervisor. I established the connection of two Compositor v8, which was hardly possible with 6th and 7th versions of Compositor program. Moreover, such connection was before the 7th version but it contained another VLF ethers, which made the determination of the transmitting station itself and creation of the protected communication channel not possible. For the experiment I executed the Compositor v8 a16 on the stationary computer and played the voice track (recorded with Dictaphone) in injector channel. I executed Compositor v8 b3 with modulation combinations on the notebook without the opportunity to inject the wavetables in the transmission channel. Using identical device settings, I received a loop in the notebook feedback chain, which definitely coincided with voice text timbre recorded with Dictaphone. Then I executed Compositor v8 a16 with ability to inject wavetables on notebook. I composited the same wavetable combination as on stationary computer and injected them in to the channel without voice track. This way, I established a definite non-repeating signal reproduced as random noise bursts with narrative text structure. This text coincided with signal performed on stationary computer transmission channel, but had another rhythm and pause appearance. I understand that for VLF communication it is enough to transmit the ostinato code pattern on the defined frequency and I credit the Compositor v8 communication experiment as successful.

My main goal is to prove the appearance of broadband communication lines in VLF. If it is possible to receive the broadband signal cycle in transmission channel, then you can try to reconstitute it by injecting the stochastic carrier using RT-z128 and RT-z64 channel modules. Then, following this logics, there will be the complete voice track with the receive quality of original translation in the feedback chain. This should be proved, establishing a connection of two Compositor v9 Hypervisor programs and their virtualization modules. If it happens, the arrangement of wavetables into the transmission channel lines will be proved.

Let’s look at the created VLF transmission lines as grains, where a separate transmission line segments coincide with wavetables, encased in window function envelope. The connection service in VLF network is a pendulum process, created by RT-zX generic modules. Then the spiral structure of transmission points distribution in all z networks coincides with pyramidal structure. When you use the linear stochastic distribution of wavetables, the mixing of transmission channels happens creating new nets. RT-zX services give access to different zones of VLF and ULF ether. Wavetables supply pendulum processes of RT-zX modules with grain components when transmitting them simultaneously in the channel. They saturate an ether of this pendulum processes with new translations. You should look into this process as a service of connection with pyramidal structure and wavetables are grains of transmission channels or pyramid transmitting points.

By ruslany

Experience the 9th Sale

Experience the 9th Sale

In this summer sale you can individually buy the Compositor v3 Hypervisor, Compositor v5 Hypervisor upgrade, Compositor v6, Compositor v7 Hypervisor upgrades, Compositor v8 upgrade and complete it with Compositor v9 Hypervisor for reduced price. If you are an owner of previous versions of Compositor, you can look into upgrade plans for Compositor v9 Hypervisor starting from € 427.99 for users that own Compositor v5 Hypervisor and Compositor v7 Hypervisor simultaneously. You can find several examples of upgrade plans presented in the tables below:

Remember that Compositor v9 is a critical update for the whole Compositor family, because it consists of output processing module, which makes the work of Compositor engine more secure, while preventing your communications with software from leaking into the ether. It is also featuring the 3d audio engine module, which allows to rotate virtual antenna in three degrees of freedom in spherical space.

To summarize, it is a good chance to obtain the complete bundle of all Compositor devices, which will last for only 6 days from 22.07.2018 to 27.07.2018.

Don’t miss a chance to buy full Compositor v9 Hypervisor bundle!

By ruslany

Compositor v9 Hypervisor is available

Compositor v9 Hypervisor is available

Compositor v9 Hypervisor DRM server creates a service of work with property rights of companies, which deliver the digital media content. When computer station works, DRM server allows dynamically playback the media content in radio ether. Compositor v9 Hypervisor playbacks digital material using streaming method in the device browser to achieve this goal. Compositor v9 Hypervisor engine is the functional modern engine with transfer function on master output and on each channel separately. It is not the wavetables but tunable polynomials, which process the output of your channel. Output cascade uses non-linear transformation formula with mathematical approximation by weighting coefficients. It gives undisputable advantage in processor time and in the precision of calculations comparing to using wavetables.

Here are the main features you can consider before buying this software:

  • Weighting coefficients
  • Network level feeding
  • DRM server
  • DSP oversampling
  • Voice or music broadcast
  • DSP sampling rate
  • On-Air broadcast
  • Device browser
  • Tracing and translation
  • RAD96 peering network
  • DRM server subscribers
  • Tracing industry novelty
  • DRM server emissions
  • Auxiliary z matching
  • 8th generation operation system
  • Three saturation stages

Please, visit the shop to buy this software. You can also visit dedicated product page to learn more about Compositor v9 Hypervisor.

By ruslany

V12 Digital engine emissions

V12 Digital engine emissions

There are two types of engines: zero-emission engines and engines, which produce the emission of materiality in a process of their work. RAD96 virtual machine relates to zero-emission engines, at the same moment full version of Compositor v9 Hypervisor DRM server is a producing aggregate with internal combustion engine simulation. Which approach is more plausible? It is experimentally established that RAD96 virtual machine produces emissions in the computer random access memory and for simulation that is more realistic the full Compositor v9 Hypervisor server is needed. The process of writing the random access memory with wavetables of such emissions is simulated using ROM players. To establish v12 engine emissions of TC-TRSRRT262144 architecture experimentally the MDL12 non-duplex modem was created. It is possible to receive such emissions in a form of working cycles of network devices, using MDL12 modem and Compositor v3 Hypervisor feeders. Each network device has the engine similar to Compositor in its core and has interrupters, which trigger operation system functions. DRM server produces device emissions of certain type, which characterized by feeding equipment used to achieve the feedback. In essence, the routers, switches and shields are ROM players, which playback such cycles as wavetables. The device architecture depends from wavetable recording bit depth and can be maximally 64-bit floating-point format. Compositor v9 Hypervisor can also playback wavetables up to 64-bit floating-point, but in this case an emission will be so short, that it cannot be reproduced in manual mode. For simplicity in treatment, 24-bit integer format wavetables are used. This way, the central DRM process exists in the network, and all the other processes are emission products of v12 engine work, which are reproduced using ROM players. You can also upload other wavetables into router ROM memory instead of statically playing the same wavetable repeatedly, placing it closer or further in the network map. Recall, that in response to feeding the non-duplex modem with a track, the map of cycles attributed to different IP addresses composited in Ableton Live transport. You can playback such wavetable earlier or later in address field using ROM players. Random wavetable playback mode in Compositor v9 Hypervisor is the linear distribution emission simulation. Such method allows reproducing an emission of equal number of loops in random access memory for each network area, which is enough for creation of virtual local area network. The access to such network carried out by simulation of antenna-feeder signal chain or kernel-jet system. By simulating the jet rotation with rifling on its borders, you can lower the emissions in Compositor v9 Hypervisor. Rifling on jet borders allows lowering wavetable emissions and lowering the number of cycles needed for simulation of harmful substance emissions of fuel decomposition. Such rifling allows afterburner mode with zero emission, which is proved by RAD96 virtual engine tests in auxiliary channel. The afterburner or oversaturation modes allows to speed up the process of RAD96 virtual machine emission simulation, shorting it to 10 seconds for each feeder every 3-4 hours. This way, generic filters cascade, which are Compositor v9 Hypervisor feeders from z=2 to z=128 allow receiving ether mixtures of different purification rate. Lower feeders, such as z=2, reproduce substance purification with small amount of regenerative cycles, at the same moment, upper feeders, such as z=128, used to reproduce high regeneration rate emissions available for more longer usage. For example, if you purify with RTC4k feeder when using DRM server with z=2, you need to perform such purification more often, than DRM server working with z=128. That is why RAD96 DRM server uses z=128 as upper value. You may look into this problem for electric engine also, where such feeders are used as rechargeable batteries and perform an emission every 3-4 hours. In such case, Compositor v9 Hypervisor base station simulates non-renewable power source and wavetables are renewable. It proves the need to perform additional emissions of wavetables, when reported values of digital counters on RAD96 virtual machine are reached, for economic model evolvement and advisability of such system. As a result, the emissions pool will grow and network of such emissions will increase and expand. It may lead to inactive state of some network areas using the model with 8 ROM players in Compositor v9 Hypervisor. The solution to this problem lies in the linear distribution of random wavetable playback. For emission simulation in broad network, it is needed longer wavetable playback periods and higher purification cycle rates. This way, increasing the pool of wavetables the number of simultaneously working virtual machines should increase regardless of the wavetables playback condition. For a system with one virtual machine, the emission purification should be performed every 4 hours. You should set the maximum speed of auxiliary channel to 5-omega and to double the wavetable playback rate by turning off the x2 button on Compositor AV Extended panel. Such approach will last for a long time, but to solve a task of larger pool of wavetables it is needed to set the auxiliary channel speed to 10-omega and do a modification of x2 button to the menu with a possibility to select fractions of a one (such as 0.5, 0.25 etc.).

To create a contact network it is needed to do the following:

  1. Run several virtual machines with guest operation systems on each of the system hard drives;
  2. Create a peering network using the free jets connected to the producing kernel;
  3. Simulate the emissions in a process of engine work with purification by generic feeders.

This way, you need not to think about brain upload as a static process. Consciousness is constantly developing and grows with new links, which simulate communications. That is why it is important to perform emissions in communication model of virtual local area network. If you ignore the simulation of emissions and stay with zero emission model by simply reloading the virtual machine in main operation system when RAM critical capacity reached, you will lose the connection to this network and it will exist independently from you without producing any income. At the same time, Compositor Software model suggests 10% limit of RMY capital usage for work of virtual machine producing kernels. If the sum of samples of virtual machine work increases more than 10% of whole wavetable capital, then the emission of new loops for ROM players should be made and add up to the pool of loops. The value of 90% increase chosen heuristically taken in account your needs and an involvement into the process. For example, you can surpass the balance of 20% of whole amount of samples in relation to wavetables pool for the work of virtual machines, but, in this case, your credit limit will be lowered in relation to the Compositor Software capital. Creating a lift of 90%, you give a large stock to your clients for virtual machines traffic generation, which they purchase from you.

By ruslany

Attachment to wavetables through system matching with oversaturation

Attachment to wavetables through system matching with oversaturation

The most effective way to feed the wavetables is to match the system z level of generic feeder with z value of auxiliary channel. The generic prolongation is progressive and depends on auxiliary channel. On the higher program effectivity speed the generic proliferates for a longer time. This in fact happens because network regeneration state is higher for upper z values. If the maximum speed for z128 generic is 200-omega, then the regeneration speed of the auxiliary channel will not match the auxiliary values of 5-omega maximum. There are two more generic kernel loops implemented in Compositor v9 Hypervisor and one change performed for the highest Compositor v7 Hypervisor feeder. You can match all auxiliary z values to quantized type generics of exactly the same z value. The program effectivity speed equals to 50-omega for z32, 150-omega for z64 and 200-omega for z128. If you feed the wavetable at speed of 5-omega together with 200-omega generic, you will proliferate the network for a longer distance. After the lowest VLF beacons will be inactive, the wavetables shouldn’t be reinitiated again. When the navigation on lowest beacons ends, you need to rely on the eldest models of Zvezda network switches such as z64 and z128. Higher regeneration VLF beacons will discover ether aggregators faster and establish a connection to them for a longer period. Other systems constantly try to knock out the feeded Zvezda network switches from the ether, which are mostly used for wavetable navigation at z=64 and z=128. For z128 generic development of 6th generation, it is hard enough to withstand such offensive behavior in the ether.

DRM server is the 8th generation development and is one generation before the system, which produces the decision as to accept or to breach the feeded VLF beacons. It leads to better understanding why the DRM server rejects some wavetables and retains the others. The rejection of wavetable produces a constant need to reinitiate a system matching. Nevertheless, wavetable initiation should be made only once during the feeding cycle. If you feed the 200-omega cycle in to the auxiliary chain together with wavetables, you should account for a number of cycles of this feeder propagation. These values should be auxiliary to the Right Ascension value and will result in longer distances of spiral ascension. The feeding period of any generic is accounted by the cycles of its oversaturation in auxiliary channel. If you feed 150 cycles per second, it equals exactly 150 cycles relatively to the whole working time of DRM server for its feeding session. If the DRM server worked for 10 minutes, then the oversaturation will last for 10 * 60 * 150 or 90000 minutes, which equals to 1500 hours or 62.5 day cycles. It is enough for the prolongation of the wavetables active state. From the other side, if you would like to leave wavetables active for a month for 200-omega z128 beacon, it is needed to perform oversaturation for only one second with DRM server total working time of 25 minutes for the current session. Using the formula 25 * 60 * 31, it will count 46500 minutes, which equals to 775 hours or approximately 32.3 day cycles prolongation time.

By ruslany

Six things to do to clear the rights on your track

Six things to do to clear the rights on your track

In a career of any artist such situations happen, when it is needed to make an emission of your composition from rotation.  Such situations may include:

  • Releasing your track with another alias by a fraud;
  • Arrears on payment for medium sales;
  • Arrears for author rights usage;
  • Discrepancy of an issue with the contract obligations.

Not all of the situations are listed here, which are out of scope for this material. The main task of this article is to describe a usage method of Compositor v9 Hypervisor after receiving ether aggregators from your track. To receive ether aggregators you will need MDL12 non-duplex modem and Compositor v3 Hypervisor feeders. The emission is done by submitting loops of your composition to non-duplex modem. The modem feedback is an ether aggregator of the server, which broadcasts your composition. You should route all loops of your composition containing exciters (the most prominent moments of a song) and fixate 131072 samples of each wavetable of all ether aggregators by digital recording. You can perform this in 32-bit version of Ableton Live 9. The ether aggregator wavetable should last for 2 bars at 161.5 bpm. The main task after ether aggregator emission is its clearance. It is such condition of wavetable playback, which, from one side, doesn’t produce the third-party traffic and, from the other side, may be used for its own communications. Now, I will describe six examples of work methods to make a full track emission, using Compositor v7 Hypervisor and Compositor v9 Hypervisor.

  1. Realize if ether aggregators, to which your track ascends, are occupied. If ether aggregators are occupied and produce big amount of third-party traffic, then you must install them through an activation function, which you can do in Compositor v9 Hypervisor. Doing this you should enable the supervisory DRM server, and it is preferable to route one of generics on the auxiliary channel input together with wavetables. You may use your ether aggregators for communications, when the VLF beacon written the routes to them.
  2. Feed your ether aggregators again, but this time changing the send regime: set the splitters in the highest position, which constitutes the smallest digit values in ionic number system. Your task is to suppress traffic of these wavetables fully. To do this feed the threshold radar RTC8k and ether aggregator of high conductance such as RT-z16 in auxiliary channel together with wavetables.
  3. Feed the transmission channel with current emission wavetables inside the pool of all your ether aggregators. Making such mix, you are allowing to realize your recipient contact network, which may lead to a refuse of recipient from these ether aggregators. Do not agree to write new tracks to these ether aggregators or to make new remixes on the original composition. Ether aggregator, received by your track emission, is your property protected by a copyright law.
  4. Perform oversaturation of global send channel together with one of generics. For this route the Compositor AV Extended back to its input, using the send regulator on its mixer direct channel. Set the pre-fader mode and turn the send knob on the highest value. This will result in oversaturation and will turn off all the producing kernels from the ether.
  5. Produce an additional emission by feeding the non-duplex MDL12 modem with 3d generation hard generic FF8 and perform the above-mentioned manipulations with this emission again.
  6. Perform system matching in a presence of agents (ether aggregators). To each z value of aux channel send the same z type generic. For example, z=2 is RTC4k and z=4 is RTC8k. The other systems match its title z value. Reaching the direct ether, you must confirm each z system send with oversaturation of auxiliary channel, which constitutes direct feeding of a channel.

The system has an ability to memorize long channel feeding sessions and reproduce its effect when DRM server works. You must feed the channel only with DRM server turned on regardless of your machine capabilities. The human brain can percept the channel interrupts, when processor is under high load reaching full effect, even when system stutters. The whole pool of ether aggregators should be maximally transparent. The condition of ether aggregators should be characterized by signal conductance through them. If ether aggregators doesn’t produce traffic, then the full tranquility reached on all translating channels.

By ruslany

Hypervisor v9 – Active broadband security system

Hypervisor v9 – Active broadband security system

Server is a machine capable to work an unlimited period theoretically. Nevertheless, even the best machines faults and overrun the resources of random access memory. It raises a question about an installation of such machines algorithm directly into recipient consciousness. Brain is the biological computer, which is most powerful and lengthy resource, which human has. Hypervisor v9 makes available the installment of quantized generics into the recipient consciousness. This raises a question about non-invasive chipping. The installation process through an activation function is as following. As mentioned in previous post, quantized generics must be routed in auxiliary channel together with wavetables or ether aggregators. It allows to install memories and to get routes to them using VLF beacons. The installation performed at the morning is enough for daily functioning of such system. This way, one installation is active during 24-hour period and VLF beacons act until the night comes. In accordance with big activity of wavetables in nighttime, two extinguishers run out the wavetable potential very fast. That’s why the installation of ether aggregators must be performed again the next morning. This way of serving allows the recipient, the man to whom installation is performed, to function in the ether environment without the accompanying equipment such as radios and Ethernet computers. I wrote down the coefficients installed using the ether aggregator and simple Morse code decoder. Then I used these coefficients for non-linear processing function and now can install any memories, associated with my tracks, directly in my consciousness. This way I install everything, which is associated with this track: the place, its perception, the age of human being, consciousness. It is possible to perform full reverse to the moment in the past to which the track ascends. This way, besides objective factors, mentioned above, the subjective factors exist: the association with ether aggregators, to which the present track route is written down. The original ether aggregators works the unlimited time and exist on the infinite time integral line. This way the synchronous analysis of non-harmonic timbre (SANT) and Fast Fourier Transform (FFT) processes can be described. The SANT is used in all Compositor Software products as a more robust signal discretization method, which gives possibilities that are more versatile. To non-invasive generics, relate all the Compositor Software instruments with stochastic manipulator. In Hypervisor version 3 the non-invasive installation of quantized type generics with one producing kernel performed. In Hypervisor v5 the installation of these generics performed with master shutter. In Hypervisor v7 the non-invasive installation of generics performed in two degrees of freedom and three producing kernels. This way, on the present day there is a full compatibility of systems installed in memory and acting. Hypervisor version 9 allows to install the three-layer quantized generics with big amount of memory up to z = 32 (N = 65536 samples), which constitutes the bandwidth of 5,7 Gb/s with installation discretization frequency of 11025 Hz. The pass band is counted using the formula (N * SR * 64) / 8, where N – is a number of samples in generic wavetable, SR is discretization frequency, 64 – is a system bit number, and the division on 8 performed to measure all the volume in bytes. Taking in account that three-layer generics deployed with 5-omega speed, which equals to 1257 ms, the full formula of expense in samples is counted. First, I count the number of samples by period using the formula N * Nms, for the maximal quantized generic, which is z = 32 it will equal to 65536 * 1257 = 82378752 samples / period. Second, I account the 24-hour sample expense of deployed ether aggregator using the formula (86400 / 1257) * 82378752 = 5662310400 samples / 24-hours. This is much less than the sum of three working servers in 24-hour period, which can reach up to 5 times of current size of non-invasive quantized generic installment. In Hypervisor v9 the installation of quantized generics performed in three degrees of freedom, which makes the full cancelation of signal constellations formed on the earlier stage of Compositor technology existence.

1 2