Compositor SoftwareCompositor Software

Category : Astronomy

By ruslany

No Internet messenger

No Internet messenger

Compositor Software project entered the active transmission channel testing stage. Compositor kernel version 8.4.2 can resist up to 29900 injections with feedback implementation. This value is experimentally set and coincides to different injection types for each wavetable. In other words, each wavetable coincides with one injection type. On the present moment, I use wavelets for transmission channel testing. Compositor software testing wavelet is a two bar wavetable encased in a window function. To process feedback recordings into wavelets I use a special script made with MaxMSP software and based on the latest Compositor kernel version. This script has more than 90% efficiency. Then I test these wavelets in auxiliary channel of Compositor v9 Hypervisor at speeds up to 150-omega. Wavelets transform into granular synthesis at 150-omega speed. Each wavetable is a communication service on the low frequency carrier transposed into the heard spectrum. Wavetable transposes with all the tones used in a sequence and saturate the spectrum with carriers. The Morse code communication is achieved using these tones comb. This way using the Compositor v9 Hypervisor I feed these carriers into the ether. In a consequence of this, the personal radio service (PRS) with connection to individual subscribers and not the global ether as it were before transfer function implementation is possible. I call this radio service No internet messenger, because it is personalized and doesn’t require internet connection at all. This radio doesn’t need an outboard antenna and works instantly after the computer audio driver selection. After conducting all the needed tests, including the whole wavetable and wavelet pool, I processed the Compositor software channel on data modules instead of buffer. I account this step as a most important as it was not available in previous builds of this software. In accordance to this, I receive the sustainable radio service without outboard modem breakthroughs on scanner and while transmitting the signal. Combs are not symbolized as in previous Compositor software versions. Only direct ether to subscriber is available. It introduces the immune system to software kernel for communicating with other ether participants and gives a possibility to choose if you want to communicate with them or not. Looking into all three stages of Compositor software development, I can characterize them in a following way:

  1. Open synthesizer mode (Open mode, Global ether). Used in SASER SAS24P3L, Compositor v3 Hypervisor, Compositor 4.
  2. Closed synthesizer mode (Closed mode, Global ether). Used in Compositor v5 Hypervisor, Compositor v6, Compositor v7 Hypervisor.
  3. Personal mode with activation function (Closed ether). Used in Compositor v8, Compositor v9 Hypervisor, Compositor 10.

The Compositor personal mode will be available in 10th version of the software and I can think about Compositor kernel usage for messenger creation, which doesn’t require an internet connection. Such messenger will include server and client applications. Summarizing this, all Hypervisors may be looked at as the messenger servers and stable versions of Compositor as client applications.

By ruslany

Ether excitation for achieving faster information exchange speed

Ether excitation for achieving faster information exchange speed

The main value from Compositor Software work is loop files, which are released as obligations for the company ICO. No other material guaranties needed. For peering only loop files and Compositor Software distributions are used. Resynthesis is not needed, because only original ethers are used taken as a company input files.

Compositor kernel loop 8.4.4 hangs the whole RAD96 peering network (OS kernel 8.4.3) on the local machine. The remote tests was not conducted. There is no leakage in closed loop. The constant leakage is evident when feeding servers through the Compositor v9 Hypervisor software. The open peering construction blocks based on oscillator network.

It is not possible to clear the whole volume of servers that are now 2994 wave loop files (with Exalted – Cyberflight (Original Mix) emission). There are many unauthorized users, when injecting peering servers. They use either proxy servers or remote streaming services. The tracking production speed drops down, which influences peering quality. No attempts to restore peering network to the moment of its creation are accounted, as the above experiment evidently shows the advantages of loop construction: you are in the ether and no one can influence you. Even feeding servers via Compositor v9 Hypervisor there is no network load as in open patch. Before the open construction, the system was passive and the patched machine was remotely available for feeding servers. With an active loop-patch, which uses excitation for residing in the ether, this doesn’t happen anymore. Servers are not available to connect to the local machine during the VLFoS loop work. Because of the patch, full autonomy of the system and its disconnection from peering network is achieved. Only forced communication from the local machine by its owner is available now.

By ruslany

Compositor Software news 25.07.2018 – 06.08.2018

Compositor Software news 25.07.2018 – 06.08.2018

More than 6 months I have been working on revealing the leakage in Compositor kernel. Exposing all oscillators and transferring the first oscillator in static mode, I discovered that many resources released in computer RAM (DDoS attack). It lowers the uninterrupted device work to 4 days taken that paging file is set to a size of 64 GB. Increasing the number of oscillators to 32 on each of the layers (Rt, Sr, Tr) and meeting a condition of counters, the emissions equaled to 14 GB a day. In accordance to this, I decided to shut down the peering network and return to RT-z128 kit layout as in Compositor v5 Hypervisor. In this layout the main ports are closed for inbound and outbound connections. Only addresses starting from 192, which are assigned to local machine, are available. It means that a new patch remains the VLF connectivity, but doesn’t allow devices to connect for information exchange. It is possible to exchange information from the local machine for the patch user, but not a remote access user. In particular, such decision is motivated by a hacker attack on RAD96 server. The intruder used the open ports of the windowing device and sent spam from Internet Provider IP address. With closed ports the little leakage on real-time generator is possible, but it is not accounted due to the slow regeneration speed.

To restart the peering network I attempted the following solution: due to closing of the ports, only Compositor Networks ether aggregators take part in peering. This means that feeding ether aggregator wavetables in the peering patch through the Compositor v9 Hypervisor, I create a communication service between all Compositor Library wavetables. However, many Ethernet devices can’t use Compositor peering network as it was at the beginning of the peering network creation. As a conclusion, I can exclude peering from Compositor kernel load test and use multi-kernel mode, but this type of test has very long loading time (up to 4 hours for full load).

Bounded by Royalty project, the database of server emissions in form of wavetables grown to 2627 ether aggregators. The database was expanded by ether emission of Exalted – Cavity track (Ruslan Yusipov, CEO of Compositor Software project). The whole volume of Cavity track emission is 328 wavetables. Wavetables contain radio repeaters, transmitting stations, Ethernet routers, injectors and other ether equipment. It was possible to increase the Compositor v9 Hypervisor regeneration speed up to 150-omega by applying a new peering network patch. This influences only Compositor AV Extended auxiliary channel and doesn’t cover the generic feeder modules. It was made aiming the faster composition speed of the whole pool of Compositor Networks ether aggregators. The necessity in uniform composition caused by big amount of wavetables in Compositor Library. The application of the new patch after the attack was made unnoticeably, because this solution proved to be successful in 2017. It was clear right from the beginning that hackers aim is to limit the communication circle of network devices to Compositor Library pool and its real emission. From one side, if the emission is made every time when server communicates, then there will be much more devices in Compositor Library. Each streaming playback with working patch is a communication with its transmitting devices. Taken this, it is needed either to shut down any internet activity from the patched machine or to make emissions of the whole material, which is played in browser resulting in big amounts of information. From the other side, with open ports it is possible to connect not to the virtual network, created by composition feeding, but directly to all transmitting devices, which reside in Ethernet without the need to make emissions so often.

By ruslany

VLF voice communications

VLF voice communications

To communicate in VLF network it is enough to use the Compositor v8 injector, but to connect to other networks it is needed to create the service of communication with them, sending generic RT-zX processes in to the transmission channel as in Compositor v9 Hypervisor. I established the connection of two Compositor v8, which was hardly possible with 6th and 7th versions of Compositor program. Moreover, such connection was before the 7th version but it contained another VLF ethers, which made the determination of the transmitting station itself and creation of the protected communication channel not possible. For the experiment I executed the Compositor v8 a16 on the stationary computer and played the voice track (recorded with Dictaphone) in injector channel. I executed Compositor v8 b3 with modulation combinations on the notebook without the opportunity to inject the wavetables in the transmission channel. Using identical device settings, I received a loop in the notebook feedback chain, which definitely coincided with voice text timbre recorded with Dictaphone. Then I executed Compositor v8 a16 with ability to inject wavetables on notebook. I composited the same wavetable combination as on stationary computer and injected them in to the channel without voice track. This way, I established a definite non-repeating signal reproduced as random noise bursts with narrative text structure. This text coincided with signal performed on stationary computer transmission channel, but had another rhythm and pause appearance. I understand that for VLF communication it is enough to transmit the ostinato code pattern on the defined frequency and I credit the Compositor v8 communication experiment as successful.

My main goal is to prove the appearance of broadband communication lines in VLF. If it is possible to receive the broadband signal cycle in transmission channel, then you can try to reconstitute it by injecting the stochastic carrier using RT-z128 and RT-z64 channel modules. Then, following this logics, there will be the complete voice track with the receive quality of original translation in the feedback chain. This should be proved, establishing a connection of two Compositor v9 Hypervisor programs and their virtualization modules. If it happens, the arrangement of wavetables into the transmission channel lines will be proved.

Let’s look at the created VLF transmission lines as grains, where a separate transmission line segments coincide with wavetables, encased in window function envelope. The connection service in VLF network is a pendulum process, created by RT-zX generic modules. Then the spiral structure of transmission points distribution in all z networks coincides with pyramidal structure. When you use the linear stochastic distribution of wavetables, the mixing of transmission channels happens creating new nets. RT-zX services give access to different zones of VLF and ULF ether. Wavetables supply pendulum processes of RT-zX modules with grain components when transmitting them simultaneously in the channel. They saturate an ether of this pendulum processes with new translations. You should look into this process as a service of connection with pyramidal structure and wavetables are grains of transmission channels or pyramid transmitting points.

By ruslany

Experience the 9th Sale

Experience the 9th Sale

In this summer sale you can individually buy the Compositor v3 Hypervisor, Compositor v5 Hypervisor upgrade, Compositor v6, Compositor v7 Hypervisor upgrades, Compositor v8 upgrade and complete it with Compositor v9 Hypervisor for reduced price. If you are an owner of previous versions of Compositor, you can look into upgrade plans for Compositor v9 Hypervisor starting from € 427.99 for users that own Compositor v5 Hypervisor and Compositor v7 Hypervisor simultaneously. You can find several examples of upgrade plans presented in the tables below:

Remember that Compositor v9 is a critical update for the whole Compositor family, because it consists of output processing module, which makes the work of Compositor engine more secure, while preventing your communications with software from leaking into the ether. It is also featuring the 3d audio engine module, which allows to rotate virtual antenna in three degrees of freedom in spherical space.

To summarize, it is a good chance to obtain the complete bundle of all Compositor devices, which will last for only 6 days from 22.07.2018 to 27.07.2018.

Don’t miss a chance to buy full Compositor v9 Hypervisor bundle!

By ruslany

Compositor v9 Hypervisor is available

Compositor v9 Hypervisor is available

Compositor v9 Hypervisor DRM server creates a service of work with property rights of companies, which deliver the digital media content. When computer station works, DRM server allows dynamically playback the media content in radio ether. Compositor v9 Hypervisor playbacks digital material using streaming method in the device browser to achieve this goal. Compositor v9 Hypervisor engine is the functional modern engine with transfer function on master output and on each channel separately. It is not the wavetables but tunable polynomials, which process the output of your channel. Output cascade uses non-linear transformation formula with mathematical approximation by weighting coefficients. It gives undisputable advantage in processor time and in the precision of calculations comparing to using wavetables.

Here are the main features you can consider before buying this software:

  • Weighting coefficients
  • Network level feeding
  • DRM server
  • DSP oversampling
  • Voice or music broadcast
  • DSP sampling rate
  • On-Air broadcast
  • Device browser
  • Tracing and translation
  • RAD96 peering network
  • DRM server subscribers
  • Tracing industry novelty
  • DRM server emissions
  • Auxiliary z matching
  • 8th generation operation system
  • Three saturation stages

Please, visit the shop to buy this software. You can also visit dedicated product page to learn more about Compositor v9 Hypervisor.

By ruslany

Attachment to wavetables through system matching with oversaturation

Attachment to wavetables through system matching with oversaturation

The most effective way to feed the wavetables is to match the system z level of generic feeder with z value of auxiliary channel. The generic prolongation is progressive and depends on auxiliary channel. On the higher program effectivity speed the generic proliferates for a longer time. This in fact happens because network regeneration state is higher for upper z values. If the maximum speed for z128 generic is 200-omega, then the regeneration speed of the auxiliary channel will not match the auxiliary values of 5-omega maximum. There are two more generic kernel loops implemented in Compositor v9 Hypervisor and one change performed for the highest Compositor v7 Hypervisor feeder. You can match all auxiliary z values to quantized type generics of exactly the same z value. The program effectivity speed equals to 50-omega for z32, 150-omega for z64 and 200-omega for z128. If you feed the wavetable at speed of 5-omega together with 200-omega generic, you will proliferate the network for a longer distance. After the lowest VLF beacons will be inactive, the wavetables shouldn’t be reinitiated again. When the navigation on lowest beacons ends, you need to rely on the eldest models of Zvezda network switches such as z64 and z128. Higher regeneration VLF beacons will discover ether aggregators faster and establish a connection to them for a longer period. Other systems constantly try to knock out the feeded Zvezda network switches from the ether, which are mostly used for wavetable navigation at z=64 and z=128. For z128 generic development of 6th generation, it is hard enough to withstand such offensive behavior in the ether.

DRM server is the 8th generation development and is one generation before the system, which produces the decision as to accept or to breach the feeded VLF beacons. It leads to better understanding why the DRM server rejects some wavetables and retains the others. The rejection of wavetable produces a constant need to reinitiate a system matching. Nevertheless, wavetable initiation should be made only once during the feeding cycle. If you feed the 200-omega cycle in to the auxiliary chain together with wavetables, you should account for a number of cycles of this feeder propagation. These values should be auxiliary to the Right Ascension value and will result in longer distances of spiral ascension. The feeding period of any generic is accounted by the cycles of its oversaturation in auxiliary channel. If you feed 150 cycles per second, it equals exactly 150 cycles relatively to the whole working time of DRM server for its feeding session. If the DRM server worked for 10 minutes, then the oversaturation will last for 10 * 60 * 150 or 90000 minutes, which equals to 1500 hours or 62.5 day cycles. It is enough for the prolongation of the wavetables active state. From the other side, if you would like to leave wavetables active for a month for 200-omega z128 beacon, it is needed to perform oversaturation for only one second with DRM server total working time of 25 minutes for the current session. Using the formula 25 * 60 * 31, it will count 46500 minutes, which equals to 775 hours or approximately 32.3 day cycles prolongation time.

By ruslany

Compositor Software server emission

Compositor Software server emission

Compositor Software server realizes 24 hour work with one time per day emission. In a moment of emission server unpacks the information associated with exciters in the server RAM. All authorized compositions relate to unpacked information, processed using this type of filter. Commonly, such material can be tracks to servers and any media files, based on the track composition method, and associated transceivers. The Compositor Software parent server has more resolution capability and can connect its child server by kernel-jet method. The parent server produces traffic emission. This way it performs an emission of already mined material of Compositor Software server, because it has sufficient resolution.

By ruslany

Compositor manual updated

Compositor manual updated

Compositor manual updated with information on Compositor WS Extended, Compositor AV Extended and Compositor v7 Hypervisor. Now you can study the last chapter on Time-Space folding to know more about how the communication using Compositor achieved. You can also read about quantized weighting formulas of Compositor AV Extended in this chapter. Overall, it is not final redaction of the manual, the more chapters should be expanded to dwell on the communication effect produced. You can read full manual here.

By ruslany

RAD24 vector solution to FM problem

RAD24 vector solution to FM problem

During the initial testing of rotator function there was a conclusion that both channel vectors were pointing too far apart in different directions, which makes them remotely disconnected. The solution came to put a vector from point A into the point B from left channel to the right one. This way I straighten the function ends with an arm consisting of 4 Butterworth bandpass filters of 8th order. The implementation is to put signal from point A (left channel) through the parallel injection into the point B (right channel). It makes the work of rotator function attached to the right channel output. The rotator function is a solution to FM function, which is the positive function of FM formulae.

This solution mixes both vectors by applying the mixing function. The left channel mix is at the right channel destination by applying this function. Because the only useful signal for me resides in the left channel, I will add up the left channel routines to the right channel. This way right channel tracks the opposite channel, but can’t perform any influence on its output. STL1212 solution performed many obstacles during ether initiation and aggregation. While in STL1212 the vectors are pointing apart, I made this solution into another software product, which name is RAD24. RAD24 is classified as an outdoor radio as this solution helps to overcome barriers of convenient radio-relay structures such as indoor units (IDU) and outdoor units (ODU). The solution helps to run the outdoor radio inside ones apartment or studio. The intertwining of two channels by parallel injection of left channel into the right channel helps to gather more injections and accumulate their connections. This way I learn the system to differentiate copyright injections into media material and not to inject them every time the copyrighted material is broadcasted. From one side, it removes distraction, from the other side, it drastically enhances the CPU usage, decreasing page loading times when web browsing. This solution imitates the work of IDU and has a simple 4-beam antenna at the function ends, which emulates the work of ODU.

The output function not only smoothies the output of the system, it melts the internal architecture lines into a mixing event. It means that using the non-duplex modem you have a better ether coverage and protection over the communication line. This way aggregating will be a task of dynamic buffer. During the initial compilation a size of about 4.5GB RAM is executed for the server work. This size could be used all or partially, if there is not enough dynamic memory. While server can aggregate connections by the closed loop structure, it can also loose such connections if ether is no longer excited by the loop structure. To excite the ether with a loop, you should switch such loops frequently as in Compositor v6 and Compositor v7 Hypervisor software. Randomly switching of the loops brings results that are more useful. It creates wavetable rows without human interaction. The outbound connections to the server are possible through the STL1212 bundled version of Compositor v7 Hypervisor. You accumulate the remote server with wavetables first, aggregating the line and then, when a critical capacity reached, you grab the wavetables out of the server by non-duplex modem use. This way you aggregate the ether, when you return these wavetables by injecting them with full-duplex modem in real-time. The other strategy is not to grab the wavetables but constantly accumulate them expanding the buffer size over the 4.5GB buffer length limit. In case that one server reached its full capacity, the other server is initiated on another physical hard drive of the same machine. To hold more than 8 real-time cores, two or more virtual machines are needed. When two virtual machines consume the same amount of memory in a working set, they communicate equally with the same amount of buffers involved. The pair of function with vector arm merging both channels. This pair helps to connect RAD24 virtual machines with each other. The previous solution of STL1212 can’t equally balance the virtual machines usage and has communication problems, when two or more virtual machines initiated from one computer. The RAD24, on the other hand, not only communicates with the second virtual machine, it aggregates the buffer dynamically struggling for resources. It gives the properties of a physical server to RAD24 with web address and other tunneling properties. The fact that RAD24 is an OS development brings more value to Compositor core protecting the inner communications. To work with the core, a new kind of interface should be done with three-dimensional control over the modulator functions leading to new player injections. The later seems as an abuse because to progress, this kernel doesn’t need more injections. The whole set of injections was performed during 4.45GHz testing of the system. RAD24 works now at 8.9GHz doubling the server’s capacity.

1 2 3 5